Курсовая работа: Прогнозирование емкости и коньюктуры рынка
Рис. 5. График ряда отклонений et
Из графика видно, что в ряде отклонений et отсутствует тенденция.
Оценим адекватность выбранной трендовой модели (параболы) исходному ряду на основе анализа ряда отклонений et .
1) Колебание величины et носит случайный характер. Выполнение этого условия означает, что величина et не содержит элементов тренда. Проверим это условие с помощью критерия поворотных точек. Точка считается поворотной, если выполняется одно из следующих условий:
et-1 < et > et+1
et-1 > et < et+1
Обозначим поворотные точки как Рt = 1. В противном случае Pt = 0. Найдем сумму всех поворотных точек P = SPt .
Выдвинем нулевую гипотезу – Н0 : колебание величины et носит случайный характер. Для проверки нулевой гипотезы рассчитаем математическое ожидание и дисперсию поворотных точек.
М(Р) = | 2 (n – 2) | = | 2 × (12 – 2) | = 6,667. |
3 | 3 |
D(Р) = | 16 n – 29 | = | 16 × 12 – 29 | = 1,811. |
90 | 90 |
При вероятности 0,95 (95%) коэффициент доверия td = 1,96.
Если расчетное значение числа поворотных точек попадает в интервал
(М(Р) – td ) < P < (М(Р) + td
), то с выбранной вероятностью можно утверждать, что колебания величины et носит случайный характер.
(6,667 – 1,96 ) < 7 < (6,667 + 1,96
)
4,029 < 7< 9.305
Таким образом, с вероятностью 95% можно утверждать, что колебания величины et носит случайный характер.
2) Распределение величины et соответствует нормальному распределению. Для этого используем RS-критерий.
S=
=
= 0,706
RSр = | emax – emin | = | 1.09– (- 0,83) | = 2,777. |
S![]() | 0,706 |
Определим табличное значение RS-критерия по таблице «Значения RS-критерия для n от 10 до 30» (Приложение 3).
RS12Н = 2,67 + 2 × | 3,18 – 2,67 | = 2,772 |
20 – 10 |
RS12В = 3,85 + 2 × | 4,49 – 3,85 | = 3,978 |
20 – 10 |
Выдвинем нулевую гипотезу: величина et соответствует нормальному распределению. Для этого должно выполняться условие: RS12Н < RSр < RS12В .
Поскольку это условие выполняется (2,772 < 2,777 < 3,978), то с вероятность 0,95 (95%) можно утверждать, что распределение величины et соответствует нормальному распределению.
3) Математическое ожидание величины et равно нулю. Для проверки этого условия выдвинем нулевую гипотезу – Н0 : М(et ) = 0, после чего определим расчетное значение величины tр :
tр = | ![]() | ×![]() |
Se |
где – средняя арифметическая простая величины et ; Se – среднее квадратическое отклонение величины et .
![]() | Set | = | 1.62 | = 0,135 |
n | 12 |
Se = =
= 0,623
tр = | 0,135 – 0 | ×![]() |
0,623 |
Найдем табличное значение tт (Приложение 1) по распределению Стьюдента при доверительной вероятности g = 1 – а = 1 – 0,05 = 0,95 и числе степеней свободы К = n – 1 = 12 – 1 = 11. В данном случае tт = 2,201.
Сопоставим табличное и расчетное значения. Если th <tт , то нулевая гипотеза принимается, и наоборот.
0,75 < 2,201, Þ с вероятностью 0,95 (95%) принимается нулевая гипотеза, т.е. М(et ) = 0.
4) Независимость членов ряда между собой (проверка временного ряда на отсутствие автокорреляции). Для проверки данного условия используется критерий Дарбина – Уотсона, расчетное значение которого определяется следующим образом:
dр = | S(et – et-1 ) 2 | = | 8,4451 | =1,88. |
S et 2 | 4,483 |
dр ¢ = 4 – 1,88 = 2,12.
По таблице «Распределение критерия Дарбина – Уотсона» для положительной автокорреляции (для 5% уровня значимости)» находим табличное значение dт . При n = 12 и V = 1 нижнее и верхнее значения распределения будут соответственно равны d1 = 1,08 и d2 = 1,36.
Сравним расчетное и табличное значения: dр > d2 (2,12 > 1,36). Таким образом, с вероятностью 95% можно говорить об отсутствии в ряде автокорреляции.
6). Рассчитаем точечную прогнозную оценку с периодом упреждения t = 1 для линейного тренда (t = 11,614+ 0,459×t):