Курсовая работа: Разработка математической модели электронного устройства

На следующем этапе анализа системы составляем строки для подпрограммы, реализующей метод Рунге-Кутта, осуществляем запуск программы и получаем результат в виде числового и графического материала.

Для анализа системы зададимся в исходном случае следующими значениями сопротивления и ёмкости: R = 100 Ом; С = 0,1 Ф.

Тогда коэффициенты в матрице будут иметь следующие значения:

A0 = 1; A1 = 60 (Ом×Ф); A2 = 400 (Ом×Ф) 2

Составляем строки для подпрограммы:

500 F (1) =H*y2

510 F (2) =H*Y (3)

520 F (3) =H* (-A0/A2Y ())

Осуществляем запуск программы RUNKUT. BAS (приложение 2), в режиме диалога вводим следующие значения:

МЕТОД РУНГЕ-КУТТА ДЛЯ N УРАВНЕНИЙ

НАЧ. И КОН. ЗНАЧЕНИЕ АРГУМЕНТА (X,XK)? 0,50

КОЛИЧЕСТВО ФУНКЦИЙ N? 2

ВВЕДИ КОЛИЧЕСТВО ТОЧЕК М? 1500

ЧЕРЕЗ СКОЛЬКО ТОЧЕК ВЫВОДИТЬ НА ЭКРАН?? 150

НАЧ. ЗНАЧЕНИЯ ФУНКЦИЙ

Y (1) =? 0

Y (2) =? 0

В результате получаем решение (приложение 3, а).

Определим длительность переходного процесса, как , где rmin - минимальный корень соответствующего характеристического уравнения, которое мы получим, если приравняем левую часть нашего неоднородного дифференциального уравнения к нулю, если корни действительные и вещественная часть корня, если корни комплексные.

Соответственное характеристическое уравнение имеет вид:

Корни этого уравнения будем искать по формуле:

Где:A0 = 1; A1 = 60; A2 = 400

То есть:

То есть время переходного процесса:

К-во Просмотров: 489
Бесплатно скачать Курсовая работа: Разработка математической модели электронного устройства