Курсовая работа: Разработка программы определительных испытаний
Рисунок 3 – Сглаживание гистограммы плотностью экспоненциального распределения
Рисунок 4 – Сглаживание гистограммы плотностью нормального распределения
Рисунок 5 – Сглаживание гистограммы плотностью гамма-распределения
Используя критерий χ2 , установим, верна ли принятая гипотеза о том, что статистические данные подчиняются нормальному распределению.
Для применения критерия χ2 необходимо, чтобы частоты ni , соответствующие каждому интервалу, были не меньше 5. Для этого при необходимости объединим рядом стоящие интервалы, а их частоты суммируем. Далее вычислим следующую сумму:
,
где pi – теоретическая вероятность того, что случайная величина Х примет значение из интервала [ai -1 ,ai ].
Предположим, что случайная величина t имеет функцию распределения F(t), поэтому pi = F(ai ) – F(ai -1 ).
Образец расчетов по предыдущей формуле для трех распределений представлен в таблице 6.
В колонке А содержатся левые, а в колонке В – праве границы интервалов. В колонке С находятся соответствующие частоты. В колонке D рассчитываются теоретические вероятности в зависимости от вида распределения.
Для экспоненциального распределения:
D31 = ЭКСПРАСП (B31; $B$5; ИСТИНА) – ЭКСПРАСП (А31; $B$5; ИСТИНА);
Для нормального распределения:
D40 = НОРМРАСП (В40; $B$8; $B$9; ИСТИНА) – НОРМРАСП (А40; $B$8; $B$9; ИСТИНА);
Для гамма-распределения:
D49 = ГАММАРАСП (В49; $B$12; $B$13; ИСТИНА) – ГАММАРАСП (А49; $B$12; $B$13$ ИСТИНА).
В колонке Е рассчитываются слагаемые соотношения по формуле:
Е31 = (С31-100*В31)^2/(100*D31), которая копируется в другие ячейки колонки Е.
После чего для каждого рассмотренного распределения определим итоговые суммы:
Е38 = СУММ(E34:E39);
Е47 = СУММ(E42:E47);
Е56 = СУММ(Е50:Е55).
Которые равны соответственно 659,6862; 5,2199 и 3,8740.
Гипотеза о виде закона распределения должна быть принята, если вычисленное значение χ2 выч достаточно мало, а именно не превосходит критического значения χ2 кр , которое определяется по распределению χ2 в зависимости от заданного уровня значимости α и числа степеней свободы r=k’ – s – 1. где k’ – количество интервалов после объединения; s – число неизвестных параметров распределения, которые были определены по выборке.
В данном примере r = 7 – 2 – 1 = 2
Критическое значение рассчитывается по формуле: