Курсовая работа: Решение параболических уравнений
1.3 Оценка погрешности и сходимость метода сеток
При решении задачи методом сеток мы допускаем погрешность, состоящую из погрешности метода и вычислительной погрешности.
Погрешность метода – это та погрешность, которая возникает в результате замены дифференциального уравнения разностным, а также погрешность, возникающая за счет сноса граничных условий с на .
Вычислительная погрешность – это погрешность, возникающая при решении системы разностных уравнений, за счет практически неизбежных машинных округлений.
Существуют специальные оценки погрешности для решения задач методом сеток. Однако эти оценки содержат максимумы модулей производных искомого решения, поэтому пользоваться ими крайне неудобно, однако эти теоретические оценки хороши тем, что из них видно: если неограниченно измельчать сетку, то последовательность решений будет сходиться равномерно к точному решению. Здесь мы столкнулись с проблемой сходимости метода сеток. При использовании метода сеток мы должны быть уверены, что, неограниченно сгущая сетку, можем получить решение, сколь угодно близкое к точному.
Итак, на примере решения краевой задачи для дифференциального уравнения параболического типа рассмотрим основные принципы метода сеток. Отметим, что если при решении разностной задачи небольшие ошибки в начальных и краевых условиях (или в промежуточных результатах) не могут привести к большим отклонениям искомого решения, то говорят, что задача поставлена корректно в смысле устойчивости по входным данным. Разностную схему называют устойчивой, если вычислительная погрешность неограниченно не возрастает. В противном случае схема называется неустойчивой.
1.4 Доказательство устойчивости разностной схемы
Пусть есть решение уравнения (1.14), удовлетворяющее возмущенным начальным условиям
и граничным условиям
.
Здесь – некоторые начальные ошибки.
Рассмотрим погрешность
.
Погрешность будет удовлетворять уравнению
(1.23)
(в силу линейности уравнения (1.14)), а также следующими граничными и начальными условиями:
, (1.24)
. (1.25)
Частное решение уравнения (1.23) будем искать в виде
. (1.26)
Здесь числа и следует подобрать так, чтобы выражение (1.26) удовлетворяло уравнению (1.23) и граничным условиям (1.24).
При целом удовлетворяет уравнению (1.23) и условиям (1.24).
Подставим уравнение (1.26) в уравнение (1.24). При этом получим:
или
.
Выражение в квадратных скобках равно