Курсовая работа: Решение параболических уравнений
Подставляя это выражение в предыдущее уравнение вместо выражения в квадратных скобках и проводя сокращения на получим:
,
откуда находим :
.
Таким образом, согласно уравнению (1.26), получаем линейно-независимые решения уравнения (1.23) в виде
Заметим, что это частное решение удовлетворяет однородным краевым условиям (1.24). Линейная комбинация этих частных решений также является решением уравнения (1.23):
, (1.27)
причем , определенное в выражении (1.27), удовлетворяет для любых однородным граничным условиям (1.24). Коэффициенты подбираются исходя из того, что должны удовлетворять начальным условиям (1.25):
.
В результате получаем систему уравнений
,
содержащую уравнений с неизвестными . Решая построенную систему определяем неизвестные коэффициенты .
Для устойчивости исследуемой разностной схемы необходимо, чтобы при любых значениях коэффициентов , определяемое формулой (1.27), оставалось ограниченной величиной при . Для этого достаточно, чтобы для всех выполнялось неравенство
. (1.28)
Анализируя (1.28) видим, что это неравенство выполняется для любых значений параметра . При этом при или в крайнем случае, когда
,
остается ограниченным и при фиксированном не возрастает по модулю. Следовательно мы доказали, что рассматриваемая разностная схема устойчива для любых значений параметра .
2. Реализация метода
2.1 Разработка программного модуля
Поставлена цель: разработать программный продукт для нахождения приближенного решения параболического уравнения:
(1.29)
в области
,
удовлетворяющее условиям
(1.30)
Разобьем область прямыми
где