Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка

2,200 4,4000 4,4000 0,0000 9,0250 9,0250 0,0000

2,400 4,8000 4,8000 0,0000 11,0232 11,0232 0,0000

2,600 5,2000 5,2000 0,0000 13,4637 13,4637 0,0000

2,800 5,6000 5,6000 0,0000 16,4446 16,4446 0,0000

3,000 6,0000 6,0000 0,0000 20,0855 20,0855 0,0000

3,200 6,4000 6,4000 0,0000 24,5325 24,5325 0,0000

3,400 6,8000 6,8000 0,0000 29,9641 29,9641 0,0000

3,600 7,2000 7,2000 0,0000 36,5982 36,5982 0,0000

3,800 7,6000 7,6000 0,0000 44,7012 44,7012 0,0000

4,000 8,0000 8,0000 0,0000 54,5981 54,5982 0,0000

Время выполнения: 0,015с

Как видно из полученного результата, точность в 0.0001 достигается уже при количестве шагов, равном 320. Время. Затраченное на расчёт таблицы значений на заданном интервале составляет всего 0.015 секунд, что практически не ощутимо. Увеличение шага сетки приведёт к повышению точности решения, однако это увеличит и время работы вычислительного процесса.

Заданная точность достигается за минимальное количество итерраций (1-3 итерации).

Ниже приведен график функций полученного и точного решений:

Рис. 5.1 График полученного и точного решения

Рис. 5.2 График полученного и точного решения


Как видно из рисунков 5.1, 5.2, расхождение кривых наблюдается только при достаточно большом увеличении графика.

Предложенная задача Коши была также решена в математическом пакете “ Mathcad 11” двумя методами: методом Рунге-Кутта 5-го порядка и методом Рунге-Кутта с непостоянным шагом. Реализация решения системы дифференциальных уравнений в “ Mathcad 11” и таблицы результатов приведены ниже:

Реализация решения задачи Коши методом Рунге-Кутта 5-го порядка:

Таблица 5.1 – Результаты решения задачи Коши методом Рунге-Кутта 5-го порядка.

x u(x) v(x) x u(x) v(x)
2 4 7,3890561 3,1 6,2 22,19795
2,02 4,04 7,5383249 3,12 6,24 22,64638
2,04 4,08 7,6906092 3,14 6,28 23,10387
2,06 4,12 7,8459698 3,16 6,32 23,5706
2,08 4,16 8,0044689 3,18 6,36 24,04675
2,1 4,2 8,1661699 3,2 6,4 24,53253
2,12 4,24 8,3311375 3,22 6,44 25,02812
2,14 4,28 8,4994376 3,24 6,48 25,53372
2,16 4,32 8,6711376 3,26 6,52 26,04954
2,18 4,36 8,8463062 3,28 6,56 26,57577
2,2 4,4 9,0250135 3,3 6,6 27,11264
2,22 4,44 9,2073308 3,32 6,64 27,66035
2,24 4,48 9,3933313 3,34 6,68 28,21913
2,26 4,52 9,5830891 3,36 6,72 28,78919
2,28 4,56 9,7766804 3,38 6,76 29,37077
2,3 4,6 9,9741824 3,4 6,8 29,9641
2,32 4,64 10,175674 3,42 6,84 30,56941
2,34 4,68 10,381237 3,44 6,879999 31,18696
2,36 4,72 10,590951 3,46 6,919999 31,81698
2,38 4,76 10,804903 3,48 6,959999 32,45972
2,4 4,8 11,023176 3,5 6,999999 33,11545
2,42 4,84 11,245859 3,52 7,039999 33,78443
2,44 4,88 11,473041 3,54 7,079999 34,46692
2,46 4,92 11,704811 3,56 7,119999 35,1632
2,48 4,96 11,941264 3,58 7,159999 35,87354
2,5 4,9999999 12,182494 3,6 7,199999 36,59823
2,52 5,0399999 12,428597 3,62 7,239999 37,33757
2,54 5,0799999 12,679671 3,64 7,279999 38,09184
2,56 5,1199999 12,935817 3,66 7,319999 38,86134
2,58 5,1599999 13,197138 3,68 7,359999 39,64639
2,6 5,1999999 13,463738 3,7 7,399999 40,4473
2,62 5,2399999 13,735723 3,72 7,439999 41,26439
2,64 5,2799999 14,013204 3,74 7,479999 42,09799
2,66 5,3199999 14,296289 3,76 7,519999 42,94842
2,68 5,3599999 14,585093 3,78 7,559999 43,81604
2,7 5,3999999 14,879732 3,8 7,599999 44,70118
2,72 5,4399999 15,180322 3,82 7,639999 45,60421
2,74 5,4799999 15,486985 3,84 7,679999 46,52547
2,76 5,5199999 15,799843 3,86 7,719999 47,46535
2,78 5,5599999 16,119021 3,88 7,759999 48,42421
2,8 5,5999999 16,444647 3,9 7,799999 49,40245
2,82 5,6399999 16,776851 3,92 7,839999 50,40044
2,84 5,6799999 17,115765 3,94 7,879999 51,4186
2,86 5,7199999 17,461527 3,96 7,919999 52,45732
2,88 5,7599999 17,814273 3,98 7,959998 53,51703
2,9 5,7999998 18,174145 4 7,999998 54,59815
2,92 5,8399998 18,541287
2,94 5,8799998 18,915846
2,96 5,9199998 19,297972
2,98 5,9599998 19,687816
3 5,9999998 20,085537
3,02 6,0399998 20,491291
3,04 6,0799998 20,905243
3,06 6,1199998 21,327557
3,08 6,1599998 21,758402

Реализация решения задачи Коши методом Рунге-Кутта с непостоянным шагом:

Таблица 5.2 – Результаты решения задачи Коши методом Рунге-Кутта с непостоянным шагом.

X u(x) v(x)
2 4 7,389056099
2,2 4,4 9,025013486
2,4 4,8 11,02317634
2,6 5,2 13,46373796
2,8 5,6 16,44464663
3 6 20,08553669
3,2 6,4 24,53252981
3,4 6,8 29,96409944
3,6 7,2 36,59823348
3,8 7,6 44,701183
4 8 54,59814775

Как видно из полученных таблиц результатов, точность решения в 0.0001 при решении методом Рунге-Кутта с непостоянным шагом достигается всего за 10 шагов, в то время, когда для достижения этой же точности при решении методом Рунге-Кутта 5-го порядка с постоянным шагом требуется около 100 шагов.

Сравнивая полученные результаты с результатами работы программы “Adams3.exe”, приходим к выводу, что неявная схема Адамса третьего порядка достаточно эффективна при численном решении задачи Коши (быстрота, высокая точность решения), однако по своим характеристикам она уступает более совершенным методам, применяющимися в различных математических пакетах.

Заключение

Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности.

К-во Просмотров: 457
Бесплатно скачать Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка