Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка

Сначала рассчитывают предиктор вида:

(2.19)

затем корректор по формуле:

(2.20)

Поскольку формула Симпсона имеет пятый порядок погрешности, то точность ε(h) – четвёртого порядка.

Многошаговые схемы

Многошаговые методы решения задачи Коши характеризуются тем, что решение в текущем узле зависит от данных не в одном предыдущем или последующем узле сетки, как это имеет место в одношаговых методах, а зависит от данных в нескольких соседних узлах.

Идея методов Адамса заключается в том, чтобы для повышения точности использовать вычисленные уже на предыдущих шагах значения

Если заменим в (2.5) подинтегральное выражение интерполяционным многочленом Ньютона, построенного по узлам , то после интегрирования на интервале получим явную экстраполяционную схему Адамса. Если заменим в (2.5) подинтегральное выражение на многочлен Ньютона, построенного по узлам , то получим неявную интерполяционную схему Адамса.

– Явная экстраполяционная схема Адамса 2-го порядка

(2.21)

Схема двухшаговая, поэтому необходимо для расчётов найти по схеме Рунге-Кутта 2-го порядка , после чего , , … вычисляют по формуле (2.21)

– Явная экстраполяционная схема Адамса 3-го порядка

(2.22)

Схема двухшаговая, поэтому необходимо сперва найти и по схеме предиктор-корректор 4-го порядка, после чего , , … вычисляют по формуле (2.22).

3. Описание используемого метода

Для решения системы дифференциальных уравнений выбрана неявная схема Адамса 3-го порядка, как одна из наиболее точных конечноразностных схем для решения задачи Коши. Чтобы прийти к неявной схеме Адамса, заменим подинтегральное выражение в уравнении:

(3.1)

интерполяционным многочленом Ньютона 2-го порядка, вида:

(3.2)


После интегрирования полученного выражения на интервале , приходим к уравнению неявной схемы Адамса 3-го порядка:

. (3.3)

Данная схема не разрешена явно относительно , поэтому сначала необходимо вычислить любым подходящим методом, например методом Рунге-Кутта четвёртого порядка. Затем для нахождения требуется использовать метод простой итерации:

, (3.4)

где s=1,2,3,… – номер итерации. Условие выхода из цикла итерационной процедуры:

, (3.5)

где ε – заданная погрешность.

Начальное приближение задаётся формулой для явной экстраполяционной схемы Адамса 2-го порядка:

. (3.6)

Схема устойчива, сходится быстро. Чаще всего достаточно одной итерации. Порядок погрешности ε(h) неявной схемы Адамса третьего порядка равен четырём.


4. Описание блок-схемы алгоритма

К-во Просмотров: 450
Бесплатно скачать Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка