Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка
Сначала рассчитывают предиктор вида:
(2.19)
затем корректор по формуле:
(2.20)
Поскольку формула Симпсона имеет пятый порядок погрешности, то точность ε(h) – четвёртого порядка.
Многошаговые схемы
Многошаговые методы решения задачи Коши характеризуются тем, что решение в текущем узле зависит от данных не в одном предыдущем или последующем узле сетки, как это имеет место в одношаговых методах, а зависит от данных в нескольких соседних узлах.
Идея методов Адамса заключается в том, чтобы для повышения точности использовать вычисленные уже на предыдущих шагах значения
Если заменим в (2.5) подинтегральное выражение интерполяционным многочленом Ньютона, построенного по узлам , то после интегрирования на интервале получим явную экстраполяционную схему Адамса. Если заменим в (2.5) подинтегральное выражение на многочлен Ньютона, построенного по узлам , то получим неявную интерполяционную схему Адамса.
– Явная экстраполяционная схема Адамса 2-го порядка
(2.21)
Схема двухшаговая, поэтому необходимо для расчётов найти по схеме Рунге-Кутта 2-го порядка , после чего , , … вычисляют по формуле (2.21)
– Явная экстраполяционная схема Адамса 3-го порядка
(2.22)
Схема двухшаговая, поэтому необходимо сперва найти и по схеме предиктор-корректор 4-го порядка, после чего , , … вычисляют по формуле (2.22).
3. Описание используемого метода
Для решения системы дифференциальных уравнений выбрана неявная схема Адамса 3-го порядка, как одна из наиболее точных конечноразностных схем для решения задачи Коши. Чтобы прийти к неявной схеме Адамса, заменим подинтегральное выражение в уравнении:
(3.1)
интерполяционным многочленом Ньютона 2-го порядка, вида:
(3.2)
После интегрирования полученного выражения на интервале , приходим к уравнению неявной схемы Адамса 3-го порядка:
. (3.3)
Данная схема не разрешена явно относительно , поэтому сначала необходимо вычислить любым подходящим методом, например методом Рунге-Кутта четвёртого порядка. Затем для нахождения требуется использовать метод простой итерации:
, (3.4)
где s=1,2,3,… – номер итерации. Условие выхода из цикла итерационной процедуры:
, (3.5)
где ε – заданная погрешность.
Начальное приближение задаётся формулой для явной экстраполяционной схемы Адамса 2-го порядка:
. (3.6)
Схема устойчива, сходится быстро. Чаще всего достаточно одной итерации. Порядок погрешности ε(h) неявной схемы Адамса третьего порядка равен четырём.
4. Описание блок-схемы алгоритма