Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка

Первый тип – это задачи Коши, или задачи с начальными условиями. Для таких задач кроме исходного уравнения в некоторой точке a должны быть заданы начальные условия, т.е. значения функции u1(a),…, um(a):

u1(a)=,…, um(a)= (2.2)

Ко второму типу задач относятся так называемые граничные, или краевые задачи, в которых дополнительные условия задаются в виде функциональных соотношений между искомыми решениями. Количество условий должно совпадать с порядком n уравнения или системы. Если решение задачи определяется в интервале xÎ[a,b], то такие условия могут быть заданы как на границах, так и внутри интервала.

Третий тип задач для систем дифференциальных уравнений – это задачи на собственные значения. Такие задачи отличаются тем, что кроме искомых функций u1(x),…, um(x) в уравнения входят дополнительно n неизвестных параметров l1 , l2 , ..., ln , которые называются собственными значениями. Для единственности решения на интервале [a,b] необходимо задать n + m граничных условий.

Рассмотрим подробнее задачу Коши. Воспользуемся компактной записью задачи (2.1), (2.2) в векторной форме:

(2.3)

Требуется найти на интервале [a,b].

Задачу Коши удобнее всего решать методом сеток. Метод сеток состоит в следующем :

1) Выбираем в области интегрирования упорядоченную систему точек a=x1<x2<…<xn<b, называемую сеткой. Точки xi называют узлами разностной сетки, разность между соседними узлами h=xi-xi-1 – шаг сетки. Формула для вычисления шага равномерной сетки, заданной на интервале [a,b]:

, (2.4)

где nx– количество узлов заданной сетки.

2) Решение ищется в виде таблицы значений в узлах выбранной сетки, для чего дифференцирование заменяется системой алгебраических уравнений, связывающих между собой значения искомой функции в соседних узлах. Такую систему уравнений принято называть конечно-разностной схемой.

Для получения конечно-разностной схемы удобно использовать интегроинтерполяционный метод, согласно которому необходимо проинтегрировать уравнение (2.3) на каждом интервале [xk, xk+1] и разделить полученное выражение на длину этого интервала:

(2.5)

Далее апроксимируем интеграл в правой части одной из квадратурных формул и получаем систему уравнений относительно приближенных неизвестных значений искомых функций, которые в отличие от точных обозначим . При этом возникает погрешность ε, обусловленная неточностью апроксимации:

ε(h)=|| || (2.6)

Согласно основной теореме теории метода сеток (теорема Лакса), для устойчивой конечно-разностной схемы при стремлении шага h к нулю погрешность решения стремится к нулю с тем же порядком, что и погрешность апроксимации:

, (2.7)

где С0 – константа устойчивости, p – порядок апроксимации.

Поэтому для увеличения точности решения необходимо уменьшить шаг сетки h.

На практике применяется множество видов конечно-разностных схем, которые подразделяются на одношаговые, многошаговые схемы и схемы с дробным шагом.

Одношаговые схемы

– Метод Эйлера

Заменяем интеграл в правой части уравнения (2.5) по формуле левых прямоугольников:

(2.8)

Получим:

, (2.9)

где k=0,1,2,…,n.

Схема явная устойчивая. В силу того, что формула для левых прямоугольников имеет погрешность второго порядка, точность ε(h) первого порядка.

К-во Просмотров: 451
Бесплатно скачать Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка