Курсовая работа: Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка
Введение
1. Постановка задачи
2. Описание математических методов решения
3. Описание используемого метода
4. Описание блок-схемы
5. Описание программы
6. Анализ результатов
Заключение
Литература
Приложения
Приложение 1
Приложение 2
Приложение 3
Введение
Бурное развитие в последнее десятилетие информационных технологий и компьютерной техники способствует возникновению всё более сложных математических задач, для решения которых без применения численных методов требуется значительное время. Очень часто перед специалистом возникают задачи, не требующие абсолютно точного решения; как правило, требуется найти приближенное решение с заданной погрешностью. Наряду с совершенствованием компьютерной техники происходит процесс совершенствования и численных методов программирования, позволяющих за минимальный отрезок времени получить решение поставленной задачи с заданной степенью точности.
Одной из таких задач является решение систем дифференциальных уравнений. Обыкновенными дифференциальными уравнениями можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей и т. д. Ряд физических задач может быть сведён к решению дифференциальных уравнений или системы дифференциальных уравнений. Задача решения системы дифференциальных уравнений имеет важное прикладное значение при решении научных и технических проблем. Кроме того, она является вспомогательной задачей при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований. Поэтому для инженеров крайне важно грамотно находить решение этой задачи.
1. Постановка задачи
Необходимо решить с заданной степенью точности задачу Коши для системы дифференциальных уравнений на заданном интервале [a,b]. Добиться погрешности на втором конце не более 0,0001. Результат получить в виде таблицы значений приближенного и точного решений в точках заданного интервала. Построить графики полученных решений и сравнить их с точным решением.
Исходные данные:
– система дифференциальных уравнений вида:
– интервал, на котором ищется решение: [a,b]
– погрешность, с которой ищется решение: е
– формулировка задачи Коши в начальной точке заданного интервала: u(a)=u, v(a)=v
– количество узлов сетки, для которой формируется таблица значений приближенного и точного решений системы: nx
– шаг вывода на экран значений искомых функций в узлах заданной сетки: np
Выходные данные:
– таблица значений приближенного и точного решений в узлах заданной сетки;
– графики полученных и точных решений.
2. Описание математических методов решения задачи
Конкретная прикладная задача может привести к дифференциальному уравнению любого порядка или к системе таких уравнений. Произвольную систему дифференциальных уравнений любого порядка можно привести к некоторой эквивалентной системе дифференциальных уравнений первого порядка. Среди таких систем выделяют класс систем, разрешённых относительно производной неизвестных функций:
(2.1)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--