Курсовая работа: Рішення задач цілочисленного програмування
Наслідком із цієї теореми є той висновок, що оптимальне рішення задачі, областю визначення якої є опукла оболонка, натягнута на область пошуку цілочисленного рішення, збігається з оптимальним рішенням вихідної цілочисленної задачі.
Доведена теорема й наслідок з її показують принципову можливість заміни рішення задачі типу (£ц , C) деякою процедурою побудови й рішення допоміжної задачі типу (£, C), однак не дають алгоритму рішень. До того ж побудова опуклої оболонки множини £ц реальних задач – надзвичайно складна, а часом практично нерозв'язна задача,
В 1954 р. Дж. Данциг висловив ідею про те, що побудова опуклої оболонки цілочисленної області для задачі (£ц , C) можна здійснювати поетапно й вирішувати одержувані при цьому задачі. Однак при цьому виникли питання як будувати обмеження нової задачі і як забезпечити кінцівка процесу.
Відповідь на ці питання був уперше отриманий Р. Гомори, що запропонував алгоритми рішення цілочисленних і. частково цілочисленних задач.
Алгоритм Р. Гомори складається з наступних процедур:
Вирішується (£, C) – задача, що відповідає вихідної (£ц , C) – задачі.
Отримане оптимальне рішення (£, C) – задачі, якщо воно існує, перевіряється на целочисленність. Якщо умова цілочисленності виконується по всім змінним, то оптимальне рішення (£, C) – задачі є оптимальне рішення (£ц , C) – задачі. Якщо умова цілочисленності не виконується хоча б по одній координаті, то переходять до третього етапу. Якщо (£, C) – задача, виявляється нерозв'язної, те (£ц , C) – задача теж рішення не має.
Будується додаткове обмеження, що володіє тим властивістю, що з його допомогою відтинається частина області, у якій утримується оптимальне рішення (£, C) – задачі й не втримується жодного припустимого рішення (£ц , C) – задачі. Процес побудови додаткових обмежень і рішення одержуваних при цьому (£, C) – задач триває доти, поки не одержимо цілочисленного рішення або не переконаємося в нерозв'язності задачі.
При цьому властивості, який повинне володіти кожне з додаткових обмежень при переході від однієї задачі до іншої наступні:
додаткове обмеження повинне бути лінійним, щоб залишатися в області застосовності апарата лінійного програмування;
додаткове обмеження повинне відтинати частина області, у якій не втримується припустимих рішень цілочисленної (£ц , C) – задачі, але є знайдене оптимальне рішення нецілочисленної (£, C) – задачі, тобто обмеження повинне мати властивість правильності, що не дозволяє втратити оптимальне рішення вихідної (£ц , C) – задачі.
Нехай х (£, C) – оптимальне рішення (£, C) – задачі, що є неприпустимим рішенням для (£ц , C) – задачі. Нерівність
(15)
визначає правильне відсікання, якщо задовольняє
а) умові відсікання: x(?, C) задовольняє нерівності (15)
б) умові правильності: будь-яке припустиме рішення задачі (£ц , C), задовольняє нерівності (15).
Методи, засновані на використанні процедури побудови правильних відсікань, одержали назву методів відсікання.
3. Перший алгоритм Гомори
Випливаючи загальній схемі методів відсікання, вирішимо (£, C) – задачу (11, 12, 14), що відповідає (£ц , C) – задачі (11–14). Нехай x(£, C) – її оптимальне рішення. Проаналізуємо координати x(£, C) на цілочисленність. Якщо всі координати вектора x(£, C) цілі, то x(£, C) = x(£ц , C). Якщо хоча б одна координата, нехай xi , буде нецілої, надійдемо в такий спосіб.
Позначимо через N сукупність небазисних змінних і на підставі останньої симплексної таблиці запишемо розкладання xi по небазисним змінним xi , jÎN
(16)
Тому що xi – неціла величина, позначимо найближче ціле число, що не перевершує xi , через [xi ] і визначимо дробову частину: {xi }= xi - [xi ]. Очевидно, (xi )>0.
Покажемо, що по i-і рядку симплексної таблиці (?, C) - задачі (у якій коштує неціла координата рішення) можна визначити додаткове лінійне обмеження, що володіє властивостями правильності.
Теорема. Нехай - припустиме рішення (£ц , C) – задачі, тоді співвідношення
, (17)
, - ціле,
визначають правильне відсікання.
Доказ.
Запишемо вираження (16) у вигляді: