Курсовая работа: Рішення задач цілочисленного програмування

Теорема. Якщо: коефіцієнти цільової функції дискретні; F(x) обмежена знизу на багатогранній множині £; задача (£, C) має принаймні одне рішення; вибір рядка для побудови правильного відсікання виробляється за правилом мінімального номера й (£k , C) – задачі вирішуються методом послідовного уточнення оцінок, то алгоритм Дальтона й Ллевелина сходиться.

6. Алгоритм Данцига

Спосіб побудови правильних площин, що відтинають, запропонованим Данцигом значно простіше, ніж всі викладені вище способи. Але, як показали Гомори й Гофман, кінцівка алгоритму Данцига гарантується лише для дуже вузького класу задач. На прикладі алгоритму Данцига видно, наскільки тонким є питання про побудову правильних відсікань і як обережно варто підходити до різним спрощеним алгоритмам.

Розглядається повністю цілочисленна задача лінійного програмування:

Максимізувати

(39)

при умовах

(40)

(41)

– цілі, (42)

Ранг матриці вважаємо рівним m.

Теорема. Нехай x(£r , C)=xr є оптимальним опорним планом задачі (£r , C) і xr не задовольняє умові цілочисленності, Nr – множина індексів, що нумерують небазисні змінні, відповідні xr .

Тоді нерівність

(43)

є правильним відсіканням.

Правильне відсікання, що відтинає нецілочисленний оптимум x(£r , C) задачі (£r , C) , можна записати в такий спосіб:

– ціле.

Помітимо, що кожна із знову змінних однозначно визначається завданням змінних , так що .

Позначимо через упорядковані в порядку зростання компоненти плану x задачі (39) – (41), так що

(44)

Покладемо

(45)

Лема. Якщо для деякого плану x задачі (39) - (41)

, (46)

те

(47)

Доказ проведемо по індукції. Спочатку доведемо, що

(47¢)

К-во Просмотров: 287
Бесплатно скачать Курсовая работа: Рішення задач цілочисленного програмування