Курсовая работа: Розвязок інтеграла метоном Нютона Котеса та Сімсона
i, крім цього,
Підставляючи знайдене для Сn виразу в співвідношення 1.13 отримаємо формулу Чебишеваде точки Х1,Х2,…Хn визначаються із системи рівнянь 1.17.
Значення Х1,…,Хn для різних n обчислюються раніше та зводяться в таблицю 1.2.
Таблиця 1.2
Число ординат | Значення абсцис |
N=2 | -Х1=Х2=0.577350 |
N=3 | -Х1=Х3=0.707107; Х2=0 |
N=4 | -Х1=Х4=0.794654; -Х2=Х3=0.187592 |
N=5 | -Х1=Х5=0.832498; -Х2=Х4=0.374541; Х3=0 |
N=6 |
-Х1=Х6=0.866247; -Х2=Х5=0.422519; -Х3=Х4=0.266635 |
N=7 |
-Х1=Х7=0.883862; -Х2=Х6=0.529657; -Х3=Х5=0.323912; Х4=0 |
???? ???? ?????? ????????? ????????????? ??? ?1 ?? 1 , ??????? ???????? ?????? ??????
??
а Хі мають вказані в таблиці значення.
1.3.6 Метод Гауса
Для отримання підвищеної точності за чисельним інтегруванням користуються формулою Гаусса
в якій не фіксуються не тільки вузли інтерполяції Х1, Х2,…,Хn, а й квадратурні коефіцієнти С1,…,Сn. При цьому Zn невідомих величин Х1,Х2,…,Хn ; С1,…,Сn визначається із умови, що формула є точною у випадку будь-якого многочлена 2n-1[1].
Таким чином, для будь-якого многочлена (2n-1)-й степені
повинна виконуватися рівність:
Многочлен f(x), степені якого рівні 2n-1 , можна показати у вигляді
f(x)=F(x)Q(x)+R(x),(1.24)
де F(x)-шуканий многочлен n-ї степені, а Q(x) та R(X)- відповідно частинне від ділення f(x) на F(x) та залишок від цього ділення, степені многочленів Q(x) та R(x) не перевищують (2n-1).
????? ??? F(x) ????? ???????? ???:
тут величини Х1,…,Хn- шукані абсциси формули Гаусса, а А1,А2,…,Аn- постійні.
Оскільки шукана функція F(x) у вузлах Х1,…,Хn перетворюється на нуль, то
Тоді рівність 1.23 набере вигляду
Але для многочлена R(x) степені не вище n-1 також повинна бути точна рівність:
Bіднімаючи 1.28 1.27 ,отримаємо
Із останнього відношення можна визначити шукану функцію F(x). Оскільки рівність 1.29 справедлива для якого-небудь многочлена Q(x) степені n-1 , тобто для многочлена вигляду
?? ???? ??? ????-???? ????????????
отже, маємо таку систему рівнянь(1.31)
Підставляючи сюди вирази для F(x) із формули 1.25 та інтегруючи, отримаємо для визначення коефіцієнтів систему n рівнянь(1.32)
з яких видно, що А1=А3=А5=А7=…=0 та, отже, шуканий многочлен має вигляд