Курсовая работа: Силовой расчёт механизмов
1°24'
рад/сек
1.12 Определяем момент инерции маховика, обеспечивающий вращения звена приведения с заданным коэффициентом =0,022.
,
где АВ отрезок на оси ординат кривой, «Энергия-масса».
кг м2
1.13 Определим значение угловой скорости звена приведения во всех положениях кривошипа, для этого воспользуемся диаграммой «Энергия-масса».
Расчет угловой скорости ведем по формуле:
,
где KL – ордината диаграммы «Энергия-масса» в требуемом положении;
BL – абсцисса диаграммы «Энергия-масса» в требуемом положении.
Вычислим угловую скорость для каждого положения:
Вычислим изменение угловой скорости для каждого положения:
Результаты вычислений угловой скорости заносим в таблицу 4.
Исходные данные и результаты вычислений к ,с-1
Таблица 4.
Положения маховика | KL | к ,с-1 | ∆к |
0 | 40 | 29,82 | 0,2 |
1 | 46 | 29,88 | 0,26 |
2 | 42 | 29,58 | -0,03 |
3 | 18 | 29,54 | -0,077 |
4 | 1 | 29,354 | -0,266 |
5 | 12 | 29,47 | -0,149 |
6 | 24 | 29,60 | -0,02 |
7 | 32 | 29,71 | 0,09 |
8 | 40 | 29,82 | 0,2 |
По полученным значениям строим график изменения угловой скорости ∆wi = ∆wi (1 ), относительно прямой, совпадающей со значением угловой скорости звена приведения:
Вывод: входное звено вращается с переменной угловой скоростью и переменным ускорением, за счет действия переменных нагрузок. Т.к. >0, то маховик нужен, чтобы обеспечить заданную неравномерность хода =0,0182.
РАЗДЕЛ II
Силовой анализ рычажного механизма
Силовой анализ механизма заключается в нахождении неизвестных сил и моментов, приложенных к каждому звену исследуемого механизма, в частности реакции в кинематических парах.
Чтобы выполнить силовой расчет необходимо определить внешние силы и моменты сил действующих на звенья механизма (движущая сила, силы полезного сопротивления, силы тяжести или сопротивление среды).