Курсовая работа: Система прямого регулювання тиску газу з І-регулятором
В основі аналізу дискретної САК візьмемо лінійну неперервну САК після корекції з передаточною характеристикою w(s) = .
3.1 Визначення періоду дискретизації імпульсного елемента
В якості формоутворювача сигналу приймемо екстраполятор нульового порядку.
ωз = 30 с-1 – максимальна частота в спектрі вхідного сигналу.
За теоремою Котельникова для нормальної роботи системи необхідно, щоб виконувалася умова Tk = - період дискретизації, відповідно ωк ≥ 2ωз – частота дискретизації. Оберемо ωк ≥ 2·30 = 60 с-1 , тоді
Tk ≤ (с).
Виберемо період дискретизації Tk = 0,002 с, ωк = 1571 с-1 .
3.2 Визначення передаточної функції розімкнутої та замкнутої ДСАК відносно вхідної дії
w(z) = .
Спочатку розкладемо функцію на простіші дроби:
.
Виконаємо z-перетворення Лапласа отриманої функції:
.
Передатна функція замкненої ДСАК:
.
3.3 Визначення стійкості отриманої системи по критерію Гурвіца
Знаючи перехідну функцію, знайдемо характеристичне рівняння системи:D(s)=.
Виконаємо білінійне перетворення
.
Отримаємо наступне характеристичне рівняння:
На основі отриманих коефіцієнтів характеристичного рівняння побудуємо головний визначник Гурвіца:
D = .
За критерієм Гурвіца для того, щоб система автоматичного керування була стійкою, необхідно та достатньо, щоб при а0 >0 всі визначники Гурвіца були додатними.
а0 =7,529>0,
Умова стійкості системи виконуються, отже за критерієм Гурвіца САК стійка .
3.4 Побудова логарифмічної псевдочастотної характеристики ДСАК та визначення запасів стійкості
Для побудови логарифмічної псевдочастотної характеристики використаємо передаточну функцію розімкненої системи після корекції та виконання z- перетворення:
Виконаємо
,