Курсовая работа: Статистика страхования

, (3)

где f – частота i -ой группы, т.е. количество предприятий в каждой группе.

Из таблицы видно, что наибольший удельный вес имеет 5 группа – 37,5 %. При этом наблюдается рост среднего значения объёма производства и среднегодовой стоимости основных производственных фондов, что говорит о возможном наличии между данными положительной связи.

3. Для того, чтобы построить гистограмму распределения и кумуляту создадим вспомогательную таблицу.


Таблица 2.4. Вспомогательная таблица для построения графических характеристик

Группы предприятий по объёму производства, тонн f , ед s , ед.
А 1 2
280,6 – 433,2 2 2
433,2 – 585,8 2 4
585,8 – 738,4 2 6
738,4 – 891 4 10
891 – 1043,6 6 16
Итого: 16

В таблице 4 в графе 2, представлена накопленная частота [s], которая показывает, сколько единиц совокупности имеют значения признака не больше, чем данное значение. Данный показатель вычисляется путём последовательного прибавления к частоте первого интервала частот последующих интервалов.

На рисунках 1 и 2 представлены соответственно гистограмма распределения и кумулята

Рис. 2.1. Гистограмма распределения

Рис. 2.2. Кумулята


При построении гистограммы (рис.1) на оси абсцисс (х ) откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбцов должна быть пропорциональна частотам.

При построении кумуляты (рис.2) интервального вариационного ряда по оси абсцисс (х ) откладываются варианты ряда, а по оси ординат (s ) накопленные частоты, которые наносят на поле графика в виде перпендикуляров к оси абсцисс в верхних границах интервалов. Затем эти перпендикуляры соединяют и получают ломаную линию, то есть кумуляту.

4. Факторный признак – объём производства. Среднее значение для данного признака можно определить двумя способами:

1 способ – для несгруппированных данных, с помощью простой средней:

, (4)

где n – количество значений ряда наблюдения.

тонн

2 способ – для вариационного ряда (таблица 3) с помощью формулы взвешенной средней:

, (5)

где – среднее значение i-ой группы, m – число групп.

тонн

Размах вариации [R ] зависит от величины только двух крайних вариант и не учитывает степени колеблемости основной массы членной ряда:

, (6)

где , – соответственно максимальное и минимальное значение признака.

Размах вариации составляет:

R =1043,6 – 280,6 = 763

Среднее линейное отклонение, дисперсия и среднее квадратическое отклонение можно определить двумя способами.

Среднее линейное отклонение:

· для первичного ряда:

К-во Просмотров: 839
Бесплатно скачать Курсовая работа: Статистика страхования