Курсовая работа: Структурный, кинематический и силовой анализ механизма. Синтез зубчатой передачи

W = 3n – 2P5 – P4 (1.1)

где: W – степень подвижности механизма;

n – число подвижных звеньев механизма;

P5 – число кинематических пар пятого класса;

P4 – число кинематических пар четвертого класса.

Степень подвижности механизма определяет число ведущих его звеньев, т. е. количество звеньев, которым необходимо задать движение, чтобы все остальные звенья двигались по вполне определенным законам.

1.2 Определение класса механизма

Класс механизма в целом определяется классом самой сложной его структурной группы.

Механизм раскладывается на структурные группы, начиная с самого удаленного от ведущего звена. При этом всякий раз проверяется степень подвижности оставшегося механизма.

Механизм имеет пять подвижных звеньев, соединенных между собой семью кинематическими парами.

Определяем степень подвижности механизма по формуле:

W = 3n – 2P5 – P4 , (1.2)


где n = 5; P5 = 7; P4 = 0,

тогда

W = 3×5 – 2×7 = 1.

Это значит, что в данном механизме должно быть одно ведущее звено. В качестве ведущего звена принимаем звено 1 – кривошип. Далее раскладываем механизм на структурные группы и, прежде всего, отсоединяем самую удаленную от ведущего звена группу Ассура, состоящую из звеньев 4 и 5 и двух вращательных кинематических пар – IV, VI и одной поступательной VII. Степень подвижности этой группы после присоединения к стойке равна нулю:

W = 3×2 – 2×3 = 0.

Группа звеньев 4 и 5 (CD) является группой II класса.

Затем отсоединяем группу, состоящую из звеньев 2, 3 и трех кинематических пар – вращательных – II, III, V.

Степень подвижности этой группы после присоединения к стойке, как и в предыдущем случае, равна нулю.

Группа звеньев 2 и 3 (ABO2 ) является группой II класса.

После отсоединения указанных групп остался исходный механизм, состоящий из кривошипа I (O1 A), присоединенного к стойке вращательной парой I, и имеющий степень подвижности:

W = 3×1 – 2×1 = 1.

Весь механизм является механизмом II класса. Структурная форма для данного механизма составляется в порядке образования механизма (ведущее звено и все группы Ассура по порядку):

[1] – [3; 2] – [5; 4] .

2. КИНЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПЛОСКИХ МЕХАНИЗМОВ

2.1 Основные задачи и методы кинематического исследования механизмов

Кинематическое исследование состоит в изучении движения отдельных точек (звеньев) механизма независимо от сил, вызывающих это движение. Основной задачей кинематического исследования является определение:

1. положения всех звеньев при любом мгновенном положении
ведущего звена;

К-во Просмотров: 340
Бесплатно скачать Курсовая работа: Структурный, кинематический и силовой анализ механизма. Синтез зубчатой передачи