Курсовая работа: Структурный, кинематический и силовой анализ механизма. Синтез зубчатой передачи
; ; (3.8)
Определяем , входящую в уравнение равновесия, составив уравнение моментов всех сил, действующих на звено CD, относительно точки D:
; (3.9)
Н.
Поскольку составляющую получилась со знаком плюс, то это значит, что ее действительное направление совпадает с выбранным.
Исходя из значений сил, входящих в уравнение равновесия, Н:
; ; ; ;
; ; (3.10)
задаемся масштабом плана сил , Н/мм.
Максимальной силой является сила полезного сопротивления, которую в примере изобразим вектором длиной 250 мм. Получаем масштаб плана сил, Н × мм-1 :
. (3.11)
Вычисляем длины векторов, мм, изображающих эти силы, поделив их численные значения на масштаб:
; ;
; (3.12)
(задались);
От произвольной точки – полюса плана сил – параллельно силе откладываем вектор изображающий эту силу; от конца вектора параллельно силе откладываем в том же направлении вектор и далее векторы всех сил. Через точку а параллельно звену СDпроводим линию действия , а через конец вектора перпендикулярно к направляющей ползуна – линию действия силы . Точка пересечения этих линий действия определяет силы , , Н:
; (3.13)
;
Далее следует отсоединить группу Ассура АВСО2 , состоящую из звеньев 2 и 3, вычертить ее в масштабе. В соответствующих точках приложить действующие силы: . Реакцию в шарнире А и О2 представить в виде двух составляющих – , , , . Реакцию со стороны звена 4 на звено 3 , полученную из плана сил группы Ассура CD, приложить в обратном направлении в точке С звена 2 .
Составляем векторное уравнение равновесия сил, действующих на группу Ассура 2 – 3 , по порядку звеньев:
. (3.17)
Силы ,, и в уравнение не вписываем, так как это уравнение решается построением плана сил, и они взаимно уравновешивают друг друга. Но для определения и эти силы надо знать, определяем их, Н:
(3.1)
;
Из уравнения моментов относительно точки В для звена 2 определяем составляющую , Н:
(3.19)
отсюда,