Курсовая работа: Структурный, кинематический и силовой анализ механизма. Синтез зубчатой передачи
(2.16)
где: – скорость точки С, известна по значению и направлению;
– относительная скорость точки D во вращении вокруг точки С;
Относительная скорость известна по линии действия: перпендикулярна к звену DC, проводится на плане из точки С (конец вектора ). Скорость точки Dотносительно стойки направлена по линии хода ползуна, проводится на плане из полюса PV параллельно ходу ползуна до пересечения с вектором относительной скорости . Точка пересечения будет точкой d. определяющей конец вектора скорости :
VD = · ; VD = 78 × 0,013 = 1,014 м/с. (2.17)
Вектор изображает скорость VDC точки D в относительном вращении вокруг точки С:
VDC = · ; VDC = 0,2 × 0,013 = 0,0026 м/с. (2.18)
Исходя из теоремы подобия (третье свойство плана скоростей), находим на плане точки S1 – S5 , соответствующие центрам тяжести звеньев. Соединив их с полюсом PV , определяем скорости центров тяжести звеньев механизма, м/с:
VS = PV S1 · kV ; VS = 52·0,013=0,95
VS = PV S2 · kV ; VS = 70,5 × 0,013 = 2,7;
VS = VD ; VS = 1,014; (2.19)
VS = PV S4 · kV ; VS = 78× 0,013 =1,014
VS = PvS3·kv; VS = 78·0,013=1,014
Пользуясь планом скоростей, определяем угловые скорости звеньев
2, 3, 4, с-1 :
;
; (2.20)
;
Угловая скорость ползуна w5 = 0, так как он движется поступательно по неподвижной направляющей.
Для выяснения направления угловой скорости звена АВ вектор скорости , направленной к точке b плана, мысленно переносим в точку В звена 2 и определяем, что он стремится повернуть это звено вокруг точки А против часовой стрелке. По аналогии определяем направления угловых скоростей звеньев w4 (против часовой стрелки) и w3 (против часовой стрелки).
2.6 Определение ускорений точек механизма методом планов ускорений
При помощи планов ускорений можно найти ускорения любых точек механизма. Для построения планов ускорений по аналогии с планами скоростей следует пользоваться их свойствами. Свойства такие же, как и у планов скоростей, кроме третьего, где фигура, подобная одноименной жесткой фигуре на плане положений механизма, повернута на угол (180° – j¢) в сторону мгновенного ускорения e данного звена,
где . (2.21)
Поскольку полные относительные ускорения состоят из геометрической суммы тангенциальных и нормальных составляющих, то концы векторов абсолютных ускорений обозначают буквами, соответствующими названию точек.
Считая известными ускорения шарнирных точек
(аО = аО = 0), помещаем их на плане ускорений в полюсе рa . Звено О1 А вращается равномерно, поэтому точка А имеет только нормальное ускорение , которое направлено по звену О1 А к центру вращения О1 (см. рис. 2.3, в). Определяем его по формуле, м/с2 :
; . (2.22)
Принимаем (произвольно) длину отрезка , изображающего вектор ускорения точки А, равной 180 мм. Тогда масштаб плана ускорений, м/с2 ×мм-1 ,
; . (2.23)
Из полюса плана ра откладываем параллельно звену О1 А в направлении от А к О1 .
Рассматривая движения точки В со звеном АВ, составляем векторное уравнение: