Курсовая работа: Суммирование расходящихся рядов

Если , то

так что по теореме Коши-Адамара, радиус сходимости ряда (17) равен 1. Он во всяком случае не меньше 1, если А =0.

Рассмотрим теперь ряд тождеств

[2]

Выше мы установили сходимость последнего ряда в промежутке (-1,1); отсюда вытекает сходимость и всех предшествующих рядов. Кроме того,

(18)

Сопоставим с этим тождеством другое:

(19)

которое имеет место в том же промежутке (-1;

1); оно получается к -кратным дифференцированием прогрессии

Умножив обе части тождества (19) на А и вычитая из него почленно равенство (18), получим наконец,

Дальнейшие рассуждения [с учетом (16)] вполне аналогичны тем, с помощью которых была доказана теорема Абеля и теорема Фробениуса. В результате мы и получим:

что и требовалось доказать.

Отметим, что существуют расходящиеся ряды, суммируемые по методу Пуассона-Абеля, но не суммируемые ни одним из обобщенных методов Чезаро. Таким образом, первый из названных методов оказывается сильнее всех последних, даже вместе взятых.

4.3 Метод Бореля

Он состоит в следующем: по ряду (А ) и его частичным суммам строится выражение:

Если последний ряд сходится, хотя бы для достаточно больших значений х, и его сумма при имеет предел А, то это число и является “обобщенной суммой” в смысле Борелядля данного ряда (А).

Докажем регулярность метода Бореля. Допустим сходимость ряда (А ) и обозначим его сумму через А , а остатки через . Имеем (для достаточно больших х )

Зададимся произвольно малым числом ; найдется такой номер N, что для будет:


.

Представим последнее выражение в виде суммы,

К-во Просмотров: 1101
Бесплатно скачать Курсовая работа: Суммирование расходящихся рядов