Курсовая работа: Суммирование расходящихся рядов
Имеем здесь
так что . Мы пришли к той же сумме, что и по методу Пуассона-Абеля.
2) Для ряда . Частичные суммы будут (если только )
Теперь нетрудно подсчитать средние арифметические:
Итак, окончательно
Очевидно, : для значений “обобщенной суммой” и здесь служит 0.
3) Наконец, пусть снова предложен ряд
Имеем при ,
и затем
Отсюда ясно, что
Во всех случаях по методу Чезаро получилась та же “обобщенная сумма", что и выше, по методу Пуассона-Абеля. Оказывается это не случайность.
3.2 Взаимоотношение между методами Пуассона-Абеля и Чезаро
Начнем с простого замечания: если ряд (А) суммируем по методу средних арифметических к конечной “сумме” А, то необходимо
Действительно, из и следует, что
а тогда и
что и требовалось доказать.
Теорема (Фробениуса). Если ряд (А) суммируем по методу средних арифметических к конечной “сумме” А, то одновременно он суммируем также по методу Пуассона-Абеля и притом к той же сумме.
Доказательство. Итак, пусть . Ввиду сделанного вначале замечания очевидна сходимость степенного ряда
для 0< x<1. Выполнив дважды преобразование Абеля, последовательно получим
[при этом следует помнить, что ].
Известно, что (для 0< x<1 ) или