Курсовая работа: Суммирование расходящихся рядов
Умножим обе части тождества на А и вычтем из него почленно предыдущее тождество:
Сумму справа разобьем на две:
Причем число N выберем так, чтобы при было
где - произвольное наперед заданное положительное число. Тогда вторая сумма по абсолютной величине и сама будет меньше (независимо от ), а для первой суммы того же можно добиться за счет приближения x к 1. Этим и завершается доказательство.
Итак, мы установили, что во всех случаях, где приложим метод Чезаро, приложим и метод Пуассона-Абеля с тем же результатом.
Обратное же неверно: существуют ряды суммируемые методом Пуассона-Абеля, но не имеющие “обобщенной суммы" в смысле Чезаро. Рассмотрим, например, ряд
Так здесь явно не соблюдено необходимое условие суммируемости по методу средних арифметических, то этот метод не приложим. В то же время ряд
Имеет (при 0< x<1 ) сумму , которая при стремится к пределу . Это и есть “обобщенная сумма" нашего ряда по Пуассону-Абелю.
Таким образом, метод Пуассона-Абеля является более мощным, то есть приложим в более широком классе случаев, чем метод Чезаро, но не противоречит ему в тех случаях, когда они оказываются приложимыми оба.
3.3 Теорема Харди-Ландау
Как и в случае Пуассона-Абеля, для метода Чезаро также могут быть доказаны теоремы “тауберовского” типа, устанавливающие те дополнительные условия относительно членов ряда, при наличии которых из суммируемости ряда по методу средних арифметических вытекает его сходимость в обычном смысле слова. Ввиду теоремы Фробениуса ясно, что каждая тауберовская теорема для метода Пуассона-Абеля приводит, в частности, к такой же теореме для метода Чезаро. Например, сама теорема Таубера перефразируется теперь так: если и выполняется условие
( 9)
то одновременно и . Впрочем, здесь она непосредственно вытекает из легко проверяемого тождества
,
которое для данного случая указывает даже на необходимость условия (9).
Харди установил, что заключение от к можно сделать не только, если , но и при более широком предположении, что
().
Ландау показал, что можно удовольствоваться даже “односторонним” выполнением этого соотношения;
Теорема. Если ряд (А) суммируем к “сумме” А по методу средних арифметических и при этом выполняется условие (),то одновременно и
.
[Изменяя знаки всех членов ряда, видим, что достаточно также предположить неравенство другого смысла:
.
В частности, теорема, очевидно приложима к рядам с членами постоянного знака.
Доказательство. Для доказательства рассмотрим сначала сумму
,