Курсовая работа: Суммирование расходящихся рядов
Еще со времен Лейбница в качестве "суммы" приписывалось число . Эйлер, например, мотивировал это тем, что из разложения
(которое в действительности имеет место лишь для ) при подстановке вместо х единицы как раз и получается
В этом уже содержалось зерно истины, но постановке вопроса не хватало четкости; самый произвол в выборе разложения оставлял открытой возможность, скажем из другого разложения (где п и т - любые, но )
получить одновременно
Современный анализ ставит вопрос по-другому. В основу кладется то или иное точно сформулированное определение “обобщенной суммы" ряда, не придуманное только для конкретно интересующего нас числового ряда, но приложимое к целому ряду классов таких рядов. Определение “обобщенной суммы" обычно подчиняется двум требованиям.
Во-первых, если ряду приписывается “обобщенная сумма" А, а ряду - “обобщенная сумма" В, то ряд , где p, q- две произвольные постоянные, то должен иметь в качестве “обобщенной суммы" число . Метод суммирования, удовлетворяющий этому требованию, называется линейным.
Во-вторых, новое определение должно содержать обычное определение как частный случай. Точнее говоря, ряд, сходящийся в обычном смысле к сумме А, должен иметь “обобщенную сумму", и притом также равную А. Метод суммирования, обладающий этим свойством, называют регулярным. Разумеется, интерес представляют лишь такие регулярные методы, которые позволяют устанавливать “сумму” в более широком классе случаев, нежели обычный метод суммирования: лишь тогда с полным правом можно говорить об “обобщенном суммировании”. Мы переходим к теперь непосредственно к рассмотрению особо важных с точки зрения приложений методов ‘обобщенного суммирования".
Глава 2. Метод степенных рядов
2.1 Суть метода
Этот метод, в существенном принадлежит Пуассону, который сделал первую попытку применить его к тригонометрическим рядам. Он состоит в следующем.
По данному числовому ряду (А) строится степенной ряд
( 1)
Если этот ряд для сходится и его сумма при имеет предел А:
,
то число А и называют “обобщённой (в смысле Пуассона) суммой” данного ряда. Примеры.1) Ряд, рассмотренный Эйлером:
Здесь уже в силу самого определения приводит к степенному ряду, сумма которого при стремится к пределу . Значит, число , действительно, является “обобщенной суммой” указанного в точном установленном здесь смысле.
2) Возьмем более общий пример: тригонометрический ряд
(2)
является расходящимся при всех значениях
Действительно, если имеет вид , где и - натуральные числа, то для значений , кратных , будет , так что нарушено необходимое условие сходимости ряда. Если же отношение иррационально, то, разлагая его в бесконечную непрерывную дробь и составляя подходящие дроби , будем иметь, как известно,
откуда
Таким образом, для бесконечного множества значений
, так что .
Это также свидетельствует о нарушении необходимого условия сходимости. Если образовать степенной ряд:
(здесь буква заменяет прежнюю букву ), то его сумма при значении , отличном от 0, будет