Курсовая работа: Теоретический анализ модели комплексного числа

На основании изложенного можно заключить, что множество комплексных чисел С является полем.

§3. Полем комплексных чисел

Выделим из поля С комплексных чисел множества CR пар вида . Комплексное число вида назовем действительным комплексным числом.

Теорема 3.1. Множество CR действительных комплексных чисел изоморфно полю R действительных чисел.

Доказательство. Действительному комплексному числу поставим в соответствие является взаимно-однозначным. Покажем, что указанное соответствие есть изоморфизм относительно сложения и умножения. Пусть , тогда и , т.е. . Следовательно, множество CR изоморфно полю R. Поэтому можно отождествить соответствующие элементы этих множеств и считать, что поле комплексных чисел С содержит поле действительных чисел. Действительное комплексное число в дальнейшем будем обозначать действительным числом а.

Комплексное число, не равное действительному, называется мнимым числом, т.е. , где есть мнимое число. Мнимое число называют чисто мнимым числом. Число назовем мнимой единицей и обозначим буквой i.

Покажем, что мнимая единица является решением уравнения . Действительно, . Итак, или .

Теорема 3.2. Всякое комплексное число может быть представлено в виде суммы действительного и чистого мнимого чисел.

Доказательство. Представим . Таким образом, . Выражение называется алгебраической или линейной формой комплексного числа .

На основании определений 2.1, 2.2 и теорем 2.3, 2.5 действия над комплексными числами в алгебраической форме можно записать так:

1) ;

2) ;

3) ;

4) .

Сделаем такое заключение. При оперировании с комплексными числами их следует рассматривать как двучлены относительно буквы i. Получаемый при умножении член i2 надо заменить на (-1).

Теорема 3.3. Поле комплексных чисел С является минимальным расширением поля действительных чисел R.

Доказательство. Пусть подполе и отлично от . Это значит, что есть число , причем .

Возьмем число . Так как К – подполе, то вычитание и деление чисел из К снова принадлежат К. Следовательно . По тем же соображениям заключаем, что при любых а и b, т.е. К=С. Это значит, что собственных подполей, содержащих R, в С нет.

Теорема 3.4. Поле комплексных чисел не упорядоченное поле, т.е. не существует такого отношения «>», при котором выполняются условия:

1) для всякого комплексного числа zлибо z>0, либо z<0, либо z=0;

2) если и , то и ;

3) если , то , и наоборот.

Доказательство. При любом отношении «>» должно выполняться 1>0 (если предположить противное: 1<0, то по п.3 -1>0 и, согласно п.2, (-1)(-1)>0 или 1>0, что противоречит предположению 1<0).

Предположим, что для комплексных чисел существует такое отношение «>», при котором поле С будет упорядоченным полем. Возьмем . Так как , то , либо .

Рассмотрим . Тогда, согласно п.2, или -1>0. Получили противоречие.

Пусть . Тогда, согласно п.3, , откуда, согласно п.3, или . Получили противоречие. Предположив, что в поле комплексных чисел существует такое отношение «>», при котором поле С становится упорядоченным, мы установили, что для и нельзя определить, в каком они находятся отношении. Следовательно, поле комплексных чисел невозможно расположить никаким отношением «>».


§4. Категоричность аксиоматической теории комплексных чисел

Теорема 4.1. Пусть и — системы комплексных чисел. Тогда существует изоморфное отображение f системы на .

Доказательство. Прежде всего условливаемся в целях краткости пользоваться одинаковыми знаками операций в С' и R', а также в С" и R". Далее, условливаемся элементы из С' снабжать одним штрихом: , а элементы из С" двумя: Поскольку любые поля действительных чисел изоморфны, существует взаимно-однозначное отображение φ множества R' на R" такое, что:

К-во Просмотров: 411
Бесплатно скачать Курсовая работа: Теоретический анализ модели комплексного числа