Курсовая работа: Тригонометрические уравнения и неравенства
решениями которого являются значения , при которых , т. е. числа , . Второе уравнение, записанное в скобках также является однородным, но степени на 1 ниже.
Если же , то эти числа не являются корнями уравнения .
При получим: , и левая часть уравнения (1) принимает значение .
Итак, при , и , поэтому можно разделить обе части уравнения на . В результате получаем уравнение:
которое, подстановкой легко сводится к алгебраическому:
Однородные уравнения с показателем однородности 1. При имеем уравнение .
Если , то это уравнение равносильно уравнению , , откуда , .
Пример Решите уравнение .
Решение. Это уравнение однородное первой степени . Разделим обе его части на получим: , , , .
Ответ. .
Пример При получим однородное уравнение вида
Решение.
Если , тогда разделим обе части уравнения на , получим уравнение , которое подстановкой легко приводится к квадратному: . Если , то уравнение имеет действительные корни , . Исходное уравнение будет иметь две группы решений: , , .
Если , то уравнение не имеет решений.
Пример Решите уравнение .
Решение. Это уравнение однородное второй степени. Разделим обе чести уравнения на , получим: . Пусть , тогда , , . , , ; , , .
Ответ. .
К уравнению вида сводится уравнение
Для этого достаточно воспользоваться тождеством
В частности, уравнение сводится к однородному, если заменить на , тогда получим равносильное уравнение:
Пример Решите уравнение .
Решение. Преобразуем уравнение к однородному: