Курсовая работа: Вивчення поняття відносин залежності

Приклад 6.

Розглянемо довільну множину і його непусту кінцеву підмножину . Уведемо на множині А наступне відношення залежності

Z B (А) .

Таким чином, залежними будуть всі надмножини множини .


Якщо , то .

Якщо , то .

Якщо , то .

Одержуємо транзитивний простір залежності.

Приклад 7.

Підпростір простору залежності Z . Розглянемо , де діє те ж відношення залежності Z. Тоді одержимо індукований простір залежності Z B . У цьому випадку залежними будуть тільки ті підмножини множини, які були залежні в просторі Z . І якщо простір Z транзитивне, те транзитивним буде й підпростір .

Приклад 8.

Нехай і Z = . Такий простір залежності Z не транзитивне, тому що й . Простір А має два базиси й, які є і єдиними мінімальними множинами, що породжують в.

Цей приклад показує, що існують не транзитивні простори залежності, у яких мінімальні множини, що породжують, незалежні, тобто є базисами.

Приклад 9.

Задамо на множині N натуральних чисел наступне відношення залежності:

Z .

Одержуємо нескінченну строго зростаючий ланцюжок оболонок в Z . При одержуємо

.

Таким чином, маємо .

Зауваження.

Поняття простору залежності можна й зручно визначати через базу залежності. Саме, множина B всіх мінімальних залежних множин простору залежності Z назвемо його базою . Ясно, що множини з B не порожні, кінцеві й не втримуються друг у другу. Крім того, будь-яка незалежна множина містить деяка множина бази B . Простір Z має єдину базу й однозначно визначається їй. Тому простору залежності можна задавати базами.

Легко бачити, що вірно наступне твердження:

Непуста множина B підмножин множини задає на відношення залежності тоді й тільки тоді, коли множини з B не порожні, кінцеві й не включений друг у друга.

У термінах бази B можна сформулювати умова транзитивності відповідного простору залежності.

2. Простір залежності

Теорема 1.

К-во Просмотров: 292
Бесплатно скачать Курсовая работа: Вивчення поняття відносин залежності