Лабораторная работа: Символьные вычисления

limit (F, x, a, ’left’)

Описание

- Функция limit (F, x, a) определяет предел функции F(x) при x->a.

- Функция limit (F, a) автоматически определяет независимую переменную, например t, с помощью функции findsym(F) и затем вычисляется предел функции F(t) при t->a.

- Функция limit(F) предполагает по умолчанию в качестве предельной точки a=0.

- Функции limit (F, x, a, ’right’) и limit (F, x, a, ’left’) вычисляют соответственно правосторонний и левосторонний пределы.

Примеры.

>>syms x a t h

>>limit (sin(x)/x)

ans=1

>>limit((x‑2)/(x^2–4), 2)

ans=1/4

>>limit((1+2*t/x)^(3*x), x, inf)

ans=exp (6*t)

>>limit (1/x, x, 0,’right’)

ans=inf

>>limit (1/x, x, 0,’left’)

ans=-inf

>>limit((sin (x+h) – sin(x))/h, h, 0)

ans=cos(x)

v=[(1+a/x)^x, exp(-x)]

>>limit (v, x, inf, ’left’)

ans=[exp(a), 0]

Функция diff – выполняет дифференцирование функции одной переменной

Синтаксис

diff(S)

diff (S, ’v’)

diff (S, sym(‘v’))

diff (S, n)

К-во Просмотров: 500
Бесплатно скачать Лабораторная работа: Символьные вычисления