Отчет по практике: Диференціальні рівняння вищих порядків
яке називають диференційованим рівнянням першого поряд ку, якщо рівняння (1) подано у вигляді:
(2)
та його називають диференційованим рівнянням першого порядку, яке є розв’язком відносно найстаршої похідної , або явним диференціальним рівнянням, або нормальним диференційованим рівнянням першого порядку.
Оскільки теоретичні поняття і методи інтегрування диференціальних рівнянь вищого порядку є споріднені для рівнянь різних порядків, то надалі ми обмежемось розглядом диференціальних рівнянь другого порядку:
(3)
(4).
Функція називається розв’язком диференціального рівняння (3)чи (4) проміжну (a,b), якщо вона двічі не перервно диференційованa на цьому проміжку і будучи підставлена у рівняння, перетворює його у тотожність, тобто
x є (a,b)
або
Графік функції називається при цьому інтегральною кривою диференціального рівняння (3) чи (4).
Зрозуміло, що інтегральна крива повинна міститися в області визначення функції F.
Наприклад, розв’язком диференційованого рівняння є функція на проміжку , бо ця функція є двічі диференційована на цьому проміжутку і Крім того, функція де C1, C2 - довільні сталі, є також розв’язком цього рівняння.
Аналогічно переконаємось, що функція і є розвязками диференціального рівняння на проміжку , бо вони двічі диференційовані на цьому проміжку
Розвязком цього рівняння є також функції де - довільні сталі.
Далі будемо розглядпти основні поняття та означення для диференціального рівняння (4).
Функція де і довільні сталі називається загальним розв’язком диференційованого рівняння другого порядку, якщо вона є розв’язком цього рівняння для розв’язком функції і і з якої за рахунок вибору значень цих сталих можна отримати будь-який розв’язок цього рівняння (за винятком може окремих).
Розвязок який отримуємо із загального диференціального рівняння 2-го порядку, мадаючи і певних числових значень, називається числовим розвязком цього рівняння.
Задача Коші. Практичних задач, які зводяться до диференціального рівняння другого порядку, потрібно відшукати розвязок цього рівняння, що задовольняє певні додаткові умови.
Найчастіше ними є умови Коші:
( 5)
Задача знаходження розвязку диференціального рівняння (4), який задовольняє умови (5), називається задачею Коші для цього рівняння. Цю задачу Коші записуватимемо коротко:
Геометрично, задача Коші для диференціального рівняння (4) полягає у знаходженні інтегральної кривої цього рівняння. Яке проходить через точку і яка дотикається у цій точці до вектора, що утворює кут y, з додатним напрямком осі
Геометричне тлумачення задачі Коші
Зрозуміло, що точки повинні лежати області визначення функції , тобто області визначення диференціального рівняння (4).
Можна показати, що правильне таке твердження: якщо функція та її частинні похідні і є неперервні в деякому околі точки , то існує єдиний розв’язок задачі Коші (4) – (5), який визначений у певному околі точки .
Геометрично це означає, що при виконанні умов сформульованої теореми, через точну проходить єдина інтегральна крива диференціального рівняння (4), яка замикається у цій точці до вектора, який утворює з додатним напрямом осі кут .
З теореми існування та розв’язку задачі Коші для рівняння (4) випливає, що при виконанні умов теореми в деякому околі точки існує загальний розв’язок цього рівняння, з розв’язком якого отримати розв’язок задачі Коші, визначивши значення сталих і із системи рівнянь: