Отчет по практике: Диференціальні рівняння вищих порядків

Розв’язок, який задовольняє початкові умови у(1)=1, у’(1)= -1 входить у другу сімю, яка виражається загальним інтегралом . З цього загального інтеграла вилучаємо розвязок, що задовольняє задані початкові умови. Для цього маємо систему рівнянь для визначенняі :

Таким чином, шуканий розв’язок задачі Коші має вигляд:

Задача 3. Проінтегрувати рівняння знаючи, що є розв’язком відповідного однорідного рівняння.

Розв’язання. Приймемо і обчислемо похожі Підставимо вирази для у рівняння:

Після елементарних перетворень отримуємо рівняння:


або

Виконуємо заміну z’=u і маємо лінійне диференціальне рівняння першого порядку

Інтегруємо відповідне однорідне рівняння:

Загальний розв’язок лінійного неоднорідного рівняння стосовно функції u шукаємо у вигляді

Підготовимо цю функцію в неоднорідне рівняння і знайдемоС(х):

Отже, загальний розв’язок лінійного неоднорідного рівняння стосовно функції u записується у вигляді


Врахувавши, що , одержуємо загальний розв’язок

вихідного рівняння.

Задача 4. Розв’яжіть рівняння

Задача 5. Розв’язати рівняння

Відповіді на тестові завдання

1.

2.

К-во Просмотров: 394
Бесплатно скачать Отчет по практике: Диференціальні рівняння вищих порядків