Отчет по практике: Диференціальні рівняння вищих порядків
1.
2.
3.
9. З теореми існування та розв’язку задачі Коші для рівняння (4) випливає, що при виконанні умов теореми в деякому околі точки існує загальний розв’язок цього рівняння, з розв’язком якого отримати розв’язок задачі Коші, визначивши значення сталих і із системи рівнянь:
1.
2.
3.
Задачі
Задача 1. Знайти розв’язок диференційoваного рівняння що задовольняє умови
Розв’язання. Загальний розв’язок цього рівняння легко знайти шляхом інтегрування заданої рівності, бо тоді розв’язком функції , друга похідна яких дорівнює 6х:
загальний розв’язок рівняння.
Задача 2. Знайти розв’язок рівняння , який звдовольняє умови: .
Розв’язання . Оскільки у рівнянні явно не входить аргумент х , то знижуємо його порядок підстановкою з якої випливає, що
Підставити вирази для і , у дане рівняння, отримаємо диференціальне рівняння першого порядку
яке рівносильне сукупності рівнянь:
Інтегруємо друге рівняння, яке є з відокремлюваними змінними:
.
При відокремлені зміних втраченими могли бути розвязки і . Ці розв’язки не є втраченими, бо перший з них співпадає з першим рівнянням сукупності, а другий отримуємо з сімї
при
Отже, множина всіх розв’язкв дискретного рівняння у змінних y i z записується сукупністю розв’язком:
Враховуючи, що з одержаних розв’язків з яких отримуємо дві сукупності диференційних рівнянь: