Реферат: Аксиоматика векторного пространства
Глава 2
1. Некоторые векторные равенства
Среди векторных соотношений можно выделить несколько важных соотношений, называемых здесь основными. Эти основные соотношения являются, образно выражаясь, ключами к решению широкого класса задач.
I Основное соотношение. Во всяком треугольнике ЛВС выполняется равенство
(I)
Где М – центроид (точка пересечения медиан) треугольника АВС.
Докажем соотношение (I).
Пусть М – центроид треугольника АВС. Соединим точку М со всеми вершинами треугольника. Прямая МВ пересекает сторону АС треугольника АВС в точке О, являющейся серединой стороны АС. На прямой ВМ откладываем МЕ = ВМ и соединяем точку Е с вершинами А и С. очевидно, что АМСЕ –параллелограмм. Поэтому . Откуда . Так как , то . Ч.т.д.
Задача. Доказать, что если М – центроид треугольника АВС и О -произвольная точка пространства, то выполняется равенство
(1)
Доказательство:
Запишем следующие векторные равенства:
Сложив эти равенства по частям, получаем:
,
откуда
Доказанное равенство также следует отнести к основным векторным соотношениям, так как оно часто используется в решении многих задач.
II Основное соотношения. В треугольнике АВС на стороне АС взята точка D так, что АD : DС = m : n.
Тогда имеет месть следующее соотношение:
(II)
Доказательство:
Из треугольника АВС имеем:
.
Ч.т.д.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--