Реферат: Аксиоматика векторного пространства
Пусть теперь , тогда
, и
, откуда
Ответ: , .
Задача. Основанием пирамиды SABC является равносторонний треугольник ABC, длина стороны которого равна . Боковое ребро SC перпендикулярно плоскости оснований и имеет длину 2. Найти угол между прямыми, одна из которых проходит через точку S и середину ребра ВС, а друга проходит через точку С и середину ребра АВ.
Решение. Обозначим .
Выберем в качестве базиса векторы , и .
Тогда, из треугольника BCS: ,
а из треугольника ABC:
Ответ: .
Задача. Каждое ребро призмы ABCA1B1С1 равно 2.
Точки М и N – середины ребер АВ и A1А. Найти расстояние от точки М до прямой CN, если известно, что угол A1AС paвeн 60° и прямые A1A и АВ перпендикулярны.
Решение.
Рассмотрим базис, состоящий из векторов , , и составим таблицу умножения для этих векторов.
* |
а |
b |
с |
а |
4 |
0 |
2 |
b |
0 |
4 |
К-во Просмотров: 833
Бесплатно скачать Реферат: Аксиоматика векторного пространства
|