Реферат: Арифметические основы ЦВМ

Теперь можно записать число в двоичной форме (для наглядности между тетрадами поместим пробелы):

6C,7D -> 0110 1100 , 0111 1101

И, наконец, запишем полученное двоичное число так, как это принято в математике, без незначащих нулей:

6C,7D -> 1101100,01111101

П4. Правило перевода “2с/с -> 16c/c”

При переводе многоразрядного двоичного числа в шестнадцатиричную форму поступают следующим образом. Исходное число разбивают на тетрады. При этом для целой части числа разбиение проводят от местонахождения запятой влево, а для дробной части от этого же места вправо. Затем самая левая группа при необходимости дополняется незначащими нулями до образования тетрады, а самая правая группа только в дробной части дополняется нулями справа также до образования полной тетрады. После этого каждая тетрада заменяется соответствующей шестнадцатиричной цифрой. Местоположение запятой сохраняется по тем же правилам, что и в правиле П1.

Пример. Представить двоичное число 1101100,01111101 в форме шест-надцатиричного.

Разобьем исходное число на группы по четыре цифры, приняв в качестве точки отсчета местоположение запятой (для наглядности между тетрадами поместим пробелы):

110 1100 , 0111 1101

Теперь дополним до четырех цифр нулями слева самую левую группу:

0110 1100 , 0111 1101

И, наконец, заменим каждую тетраду соответствующей шестнадцатиричной цифрой:

0110 1100 , 0111 1101 -> 6С,7D.

Шестнадцатиричная и восьмеричная системы счисления используются для более компактной и удобной записи двоичных чисел.

Так, известность шестнадцатиричной системе принесло то, что с ее использованием удобно представлять программы в кодах большинства современных ЭВМ.

1.2. Перевод чисел из одной системы счисления

в другую

Поскольку в практической деятельности люди привыкли оперировать десятичной системой счисления, а в ЭВМ числа представляются в двоичной, необходимо научиться преобразовывать числа из одной системы счисления в другую. Рассмотренные выше правила перевода из двоичной системы счисления в восьмеричную и шестнадцатиричную и наоборот носят частный характер и не могут быть распространены на другие системы. Здесь же мы рассмотрим общие правила перевода, справедливые для любой пары систем счисления, хотя и более громоздкие и трудоемкие по сравнению с рассмотренными выше.

Правила перевода целых и дробных чисел не совпадают, поэтому приведем три правила перевода чисел из системы счисления с основанием R в систему счисления с основанием Q.

Правило 1. Перевод целых чисел

Для перевода целого числа N, представленного в системе счисления (с/с) с основанием R, в с/с с основанием Q необходимо данное число делить на основание Q по правилам с/с с основанием R до получения целого остатка, меньшего Q. Полученное частное снова необходимо делить на основание Q до получения нового целого остатка, меньшего Q, и т.д., до тех пор, пока последнее частное будет меньше Q. Число N в с/с с основанием Q представится в виде не упорядоченной последовательности остатков деления в порядке, обратном их получению (иными словами, старшую цифру числа N дает последнее частное).

Пример. Преобразовать десятичное число 67 в двоичную форму.

Основание исходной системы счисления R=107. Основание новой системы счисления Q=2.

Согласно приведенному правилу надо исходное число 67 делить на основание новой системы (на 2) по правилам десятичной системы счисления (исходная с/с).

Поскольку процесс деления на 2 очень прост, воспользуемся следующим приемом: в левом столбце будем писать текущие частные, а в правом - текущие остатки от их деления на 2 (это может быть либо 0, либо 1):

67 1 При делении 67 на 2 получается частное 33 и остаток 1;

33 1 при делении 33 - частное 16 и остаток 1 и т.д.

16 0

8 0

4 0

2 0

1 1 <- Старшая цифра числа.

0

Теперь можно записать число 67 в новой системе счисления. Оно равно 1000011.

Правило 2. Перевод правильной дроби

К-во Просмотров: 1085
Бесплатно скачать Реферат: Арифметические основы ЦВМ