Реферат: Диференціальні рівняння першого порядку з відокремлюваними змінними, однорідні, лінійні, Бернулл

.

Оскільки вираз у правій частині цієї рівності залежить від , рівняння інтегрується. Знайдемо один з його частинних розв’язків:

, звідки . Перевіримо, чи множник знайдено правильно. Для цього домножимо обидві частини вихідного рівняння на та переконаємося, що коефіцієнти отриманого рівняння задовольнятимуть умові (12.26). Маємо

.

Тоді

і, отже, інтегральний множник було знайдено правильно (оскільки (12.26) – рівняння в повних диференціалах). Знайдемо функцію . Оскільки

то , або

.

Продиференціюємо по та прирівняємо цю похідну до :

.

Отже, і .

Тоді

,

і загальний інтеграл рівняння має вигляд

К-во Просмотров: 346
Бесплатно скачать Реферат: Диференціальні рівняння першого порядку з відокремлюваними змінними, однорідні, лінійні, Бернулл