Реферат: Доказательства неравенств с помощью одномонотонных последовательностей
Теорема 2. Пусть (а1 а2 а3 ), (b1 b2 b 3 ) – одномонотонные последовательности и ()( здесь и в дальнейшем) любая перестановка чисел b1 b2 b 3 . Тогда
.
Доказательство.
Действительно, если последовательность отличается от (b1 b2 b3 ) то найдется пара чисел k, l (1k<l3) такая, что последовательности (ak , al ) и (bk , bl ) не одномонотонны. Значит, поменяв местами числа и , мы увеличим всю сумму, а значит и всю сумму . То есть
, так как .
Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.
Теорема доказана
Упражнения
Данные ниже упражнения мы решим с помощью Теоремы 2
Упражнение №1.
Пусть a и b и c – положительные вещественныечисла.
Докажите неравенство.
a3 +b3 +c3 a2 b+b2 c+c2 a.
Доказательство.
Заметим, прежде всего, что
a3 +b3 +c3 =, a2 b+b2 c+c2 a =
А так как последовательности (a2 , b2 , c2 ), (a, b , c) одномонотонны, то
.
А это значит, что a3 +b3 +c3 a2 b+b2 c+c2 a.
Что и требовалось доказать.
Упражнение №2.
Пусть a и b и c – положительные вещественныечисла.
Докажите неравенство.
.
Доказательство.
Заметим, прежде всего, что
и (a, b, c) и () одномонотонные последовательности, то
,