Реферат: Доказательства неравенств с помощью одномонотонных последовательностей

Если =a1 b1 , и 1 b12 b2 , и 1 b12 b2 …an bn ,

то = а1 b1 …d12 b2 …d2 + …+an bn …dn

Теорема 4. Рассмотрим одномонотонные последовательности 1 , а2 , …аn ), (b 1 , b2 ,…bn ), …, (d1 , d2 ,…,dn ). Тогда

.

Доказательство.

Действительно, если последовательность (a1 , а2 , …аn ), (b'1 , b'2 ,…b'n ), …, (d'1 , d'2 ,…,d'n ) отличается от (а1 , а2 , …аn ), (b 1 , b2 ,…bn ), …, (d1 , d2 ,…,dn ), то найдутся переменные k, l (1k<ln) такие, что последовательности (ak , al ) и (bk , bl ) …(dk , dl ) не одномонотонны. Значит, поменяв местами числа ,, ak , al … dk , dl мы увеличим всю сумму, а значит и всю сумму . То

есть

,

так как .

Очевидно, что за конечное число попарных перестановок элементов n-ой строки можно получить одномонотонную последовательность.

Теорема доказана.

Пример

Упражнение 1

Пусть а1 , а2 , …аn - положительные вещественные числа.

Докажите, что

Это неравенство называется неравенством Коши о среднем арифметическом и среднем геометрическом. Докажем его двумя способами

Доказательство.

Перепишем его в виде:

, введя новые переменные

Имеем

Если сравнить эти два доказательства неравенства, можно заметить, что доказательство с помощью одномонотонных последовательностей гораздо легче в сравнении с доказательством Коши.

неравенство одномонотонный последовательность коши

Заключение

Работая по данной теме, я узнала новый способ доказательства неравенств, вспомнила уже изученные способы доказательства неравенств. Все упражнения в работе я решала сама.

Список использованной литературы

К-во Просмотров: 446
Бесплатно скачать Реферат: Доказательства неравенств с помощью одномонотонных последовательностей