Реферат: Эконометрическое моделирование рынка вторичных трехкомнатных квартир металлургического района г.
24.84905
Adjusted R-squared
0.790624
Prob(F-statistic)
0.000000
S.E. of regression
171.9732
В скобках под оценками коэффициентов модели приведены их стандартные ошибки.
Выделены те параметры модели, для которых гипотеза о значимости коэффициентов подтвердилась на 5% уровне значимости, т.е. значение Prob.< 0,05 и значения стандартной ошибки меньше оцениваемых коэффициентов в 2 раза и более.
Значимыми оказались факторы:
1. Х2 - удобство положения увеличивает цену на 98.35 тыс. руб.;
2. Х6 - остальная площадь (общая площадь – жилая площадь) увеличивает цену (цена одного квадратного метра: 12.07 тыс. руб.). Т.е. при увеличении остальной площади на 1 кв. метр стоимость квартиры возрастает на 12.07 тыс. руб.
3. Х13 - полнометражная серия квартиры увеличивает цену на 162.16 тыс. руб.;
4. Х15 - элитная серия квартиры увеличивает цену на 1587.57 тыс. руб.;
5. Х16 - наличие каждого балкона увеличивает цену на 139.24 тыс. руб.
Коэффициент детерминации получился равным R-squared=0.82, т.е. весьма близким к единице. Исходя из этого, можно сделать предположение о близости построенного уравнения к выборке.
Значение Prob(F-statistic)=0, следовательно, уравнение в целом абсолютно значимо.
Для выявления эффекта мультиколлинеарности оцениваем матрицу парных коэффициентов корреляции (она приведена в Приложении 2).
Значение коэффициента парной корреляции между факторами X5 и X6 равно 0.41, что может повлечь эффект мультиколлинеарности.
Исходя из экономического смысла, можно объединить эти факторы, просуммировав их (т.к. Х5 - жилая площадь, Х6 – остальная площадь).
Коэффициент парной корреляции между X3 (количество этажей в доме) и X4 (№ этажа) равен 0.48, а между Х3 и X8 (материал стен дома) его значение равно 0.7, что также может обусловить появление мультиколлинеарности.
В связи с этим, введем вместо Х3 и Х4 регрессор (Х3/Х4), которую можно интерпретировать как «соотношение этажности дома и этажа квартиры».
На основании больших значений коэффициентов парной корреляции со многими регрессорами (см. приложение 2), больших стандартных ошибок и больших значений Prob. (> 0.05) исключаем незначимые регрессоры.
Можно предположить, что приведенные ниже факторы незначимы по следующим причинам:
1. Х1 – наличие посредника.
Незначим в связи с невозможностью достоверного определения участия посредника в продаже квартиры.
2. Х7 – наличие телефона;
Х17 – застекленный балкон;
Х18 – железная дверь;