Реферат: Экстремумы функций
Цель дипломного проекта – рассмотрение и описание функций одной и многих переменных, а также в рассмотрении методов, используемых при этом.
Данный дипломный проект рассчитан на абитуриентов высших учебных заведений. На вопрос - можно ли ввести рассмотрение этой темы в старших классах школы – ответ будет дан в последней главе дипломного проекта, после рассмотрения задач и возможных методов их решения.
В дипломном проекте с большей логической стройностью и без повторений приведено изложение темы – функции одной и многих переменных, сообщены сведения из математического анализа, необходимые при изучении физики и ряда инженерных дисциплин.
2.Историческая справка.
В жизни постоянно приходится сталкиваться с необходимостью принять наилучшее возможное (иногда говорят - оптимальное) решение. Огромное число подобных проблем возникает в экономике и технике. При этом часто случается так, что полезно прибегнуть к математике.
В математике исследование задач на максимум и минимум началось очень давно – двадцать пять веков назад, Долгое время к задачам на отыскание экстремумов не было сколько – нибудь единых подходов. Но примерно триста лет назад – в эпоху формирования математического анализа – были созданы первые общие методы решения и исследования задач на экстремум.
Накопление методов дифференциального исчисления приняло наиболее явную форму у Ферма. В 1638 году он сообщил в письме Декарту, что решил задачу определения экстремальных значений функции f(x). Ферма составлял уравнение (f(x+h)-f(x))/h=0 и после преобразований в левой части полагал h=0, вопреки мнению позднейших исследователей, которые видели в этой идеи исчисления бесконечно малых. В действительности, Ферма нашел это условие и аналогичное (f(y)-f(x))/(y-x)=0 при y=x ещё алгебраическими путями.
Рассуждения при нахождении экстремума функции f(x) следующие. Пусть для некоторого x функция достигает максимума. Тогда f(x h)<f(x);f(x) Ph Qh2 …<f(x) . Вычитаем из обеих частей и делим на h, откуда P Qh …<0.Так как h можно выбрать любой малости, член P будет по модулю больше суммы всех остальных членов. Неравенство поэтому возможно лишь при условии P=0, что и дает условие Ферма. В случае минимума рассуждения аналогичные. Ферма знал также, что знак Q определяет характер экстремума.
К сожалению, Ферма не стремился публиковать свои работы, кроме того, пользовался труднодоступными для усвоения алгебраическими средствами Виета с его громоздкой символикой. Видимо, поэтому он не сделал последнего, уже небольшого, шага на пути к созданию дифференциального исчисления.
Накопление фактов дифференциального исчисления происходило быстро. В “Дифференциальном исчислении” (1755) Эйлера это исчисление появляется уже в весьма полном виде.
Правила определения экстремумов функции одной переменной y=f(x) были даны Маклореном. Эйлер разработал этот вопрос для функции двух переменных. Лагранж показал (1789), как отличать вид условного экстремума для функции многих переменных.
В XVIII веке возникло исчисление вариаций. В трудах Эйлера и Лагранжа оно приобрело вид логически стройной математической теории. Главной задачей, решаемой средствами этого исчисления, являются отыскание экстремумов функционалов.
3.Экстремумы функций одной переменной.
3.1.Необходимое условие.
Пусть функция f(x), определенная и непрерывная в промежутке[a,b], не является в нем монотонной. Найдутся такие части[ , ] промежутка [a,b], в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т.е.между и .
Говорят, что функция f(x) имеет в точке максимум (или минимум), если эту точку можно окружить такой окрестностью (x0 - ,x0 + ), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство.
f(x) < f(x0 )(или f(x)>f(x0 ))
Иными словами, точка x0 доставляет функции f(x) максимум (минимум), если значение f(x0 ) оказывается наибольшим (наименьшим) из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки. Отметим, что самое определение максимума (минимума) предполагает, что функция задана по обе стороны от точки x0 .
Если существует такая окрестность, в пределах которой (при x=x0 ) выполняется строгое неравенство
f(x)<f(x0 )(или f(x)>f(x0 )
то говорят, что функция имеет в точке x0 собственный максимум (минимум), в противном случае – несобственный.
Если функция имеет максимумы в точках x0 и x1 , то, применяя к промежутку[x0 ,x1 ] вторую теорему Вейерштрасса, видим, что наименьшего своего значения в этом промежутке функция достигает в некоторой точке x2 между x0 и x1 и имеет там минимум. Аналогично, между двумя минимумами непременно найдется максимум. В том простейшем (и на практике – важнейшим) случае, когда функция имеет вообще лишь конечное число максимумов и минимумов, они просто чередуются.
Заметим, что для обозначения максимума или минимума существует и объединяющий их термин – экстремум.
Понятия максимум (max f(x)) и минимум (min f(x)) являются локальными свойствами функции и имеют место в определенной точке х0 . Понятия наибольшего (sup f(x)) и наименьшего (inf f(x)) значений относятся к конечному отрезку [a,b] и являются глобальными свойствами функции на отрезке.
Из рисунка 1 видно, что в точках х1 и х3 локальные максимумы, а в точках х2 и х4 – локальные минимумы. Однако, наименьшего значения функция достигает в точке х=а, а наибольшего – в точке х=b.
Поставим задачу о разыскании всех значений аргумента, доставляющих функции экстремум. При решении ее основную роль будет играть производная.
Предположим сначала, что для фунции f(x) в промежутке(a,b) существует конечная производная. Если в точке х0 функция имеет экстремум, то, применяя к промежутку (х0 - ,х0 + ), о которой была речь выше, теорему Ферма, заключаем, что f(x)=0 этом состоит необходимое условие экстремума. Экстремум следует искать только в тех точках, где производная равна нулю.
Не следует, думать, однако, что каждая точка, в которой производная равна нулю, доставляет функции экстремум : указанное только что необходимое условие неявляется достаточным.
3.2.1.Достаточное услоие.Первый признак.
Дополним, что точки, где производная равна нулю, называются стационарными ; а точки, где производная не существует называются критическими.
Итак, если точка х0 есть стационарная точка для функции f(x) или если в этой точке не существует для неё двусторонней конечной производной, то точка х0 представляется, так сказать лишь “подозрительной” по экстремуму и подлежит дальнейшему испытанию.
Это испытание состоит а проверке достаточных условий для существования экстремума, которые мы сейчас утановим.
Предположим, что в некоторой окрестности (х- ,х+ ) точки х0 (по крайней мере, для х=х0 ) существует конечная производная и как слева от х0 , так и справа от х0 (в отдельности) сохраняет определенный знак. Тогда возможны следующие три случая: