Реферат: Экзаменационные билеты по математике

Билет № 9


    1. Формула угла между прямыми на плоскости, заданными своими угловыми уравнениями. Условие параллельности и перпендикулярности прямых на плоскости.

    2. Что такое стохастический (случайный) эксперимент, событие, элементарные события? Привести пример случайного эксперимента и описать в нем элементарные события.

    3. Определить, какие из точек К (0, -4), L (-1,1), M (6, -9) принадлежат множеству
      А = {(x,y) : x2 + 1y ≥ -x -3}.

    4. Найти длину вектора – 3, если дано: {2, -4, -1}, {-1, -3, 1}.

    5. Найти интервалы монотонности функции ƒ(х) = х4 – 2х2 –3.

    6. Случайная величина X задана рядом распределения:

      найти Р3 и DX.


Зав. кафедрой

--------------------------------------------------


Экзаменационный билет по предмету

МАТЕМАТИКА. БАЗОВЫЙ КУРС (ДЛЯ ЭКОНОМИСТОВ И МЕНЕДЖЕРОВ)


Билет № 10


    1. Дать определение области определения и области значений числовой функции. Описать области определения и значений функции y = .

    2. Что такое схема Бернулли? Записать асимптотические формулы Муавра-Лапласа и объяснить, при каких условиях они применяются.

    3. Даны числовые множества: А = { | x целое}, В = {х2 | х целое}, С= (-2, 12). Найти
      (А С) \ В.

    4. Найти общее уравнение высоты треугольника АВС из точки А, если известно:
      А (-1, 4), В (-1, 0), С (2, 1).

    5. Найти производную функции f(x) =.

    6. Вероятность того, что денежная купюра фальшивая равна 0.001. Найти вероятность того, что среди 500 полученных Вами купюр имеется фальшивая.


Зав. кафедрой

--------------------------------------------------


Экзаменационный билет по предмету

МАТЕМАТИКА. БАЗОВЫЙ КУРС (ДЛЯ ЭКОНОМИСТОВ И МЕНЕДЖЕРОВ)


Билет № 11


    1. Каноническое уравнение гиперболы. Геометрический смысл его параметров. Формулы координат фокусов. Привести пример.

    2. Дать определение независимых событий. Записать формулу вероятности произведения независимых событий и привести пример ее применения.

    3. Найти сумму первых 5 членов геометрической прогрессии, если первый член равен 3, а четвертый -24.

    4. Написать уравнение плоскости, походящей через точку А(1,0,-1) параллельно плоскости 4x + 2y - 5z - 4 = 0.

    5. Вычислить неопределенный интеграл .

    6. Рабочий обслуживает три станка. Вероятность того, что в течение часа станок не потребует внимания рабочего равна: для первого станка 0,9, для второго 0,8, для третьего - 0,85. Какова вероятность того , что в течение некоторого часа, по крайней мере, один станок потребует внимания?


К-во Просмотров: 917
Бесплатно скачать Реферат: Экзаменационные билеты по математике