Реферат: Формула Шлетца

В дальнейшем эту функцию будем называть относительной длиной. Т.о., линия f-1 (W) является линией уровня функцииh . Заметим, что (9) является дифференциальным уравнением линииf-1 (W) .

]W1 ,W2 - одномерные многообразия вR(p1 p2 ) , содержащие элемент 1 р2 ) и определяемые соответственно уравнениями:

(p1 * ,p2 * ) є W1 ↔p2 * =p2 .

(p1 * ,p2 * ) є W2 ↔p1 * =p1 .

Следующая теорема доказывается аналогично теореме 1.

Теорема 2. Прямая (7) является касательной в точке P к прообразу многообразияW2 (многообразияW1 ) при отображенииf .

Дифференциальные уравнения линииf-1 (W1 ) и f-1 (W2 ) имеют соответственно вид:

λj Wj =0

μj Wj =0 .

Пусть W0 - одномерное подмногообразиев R(p1 p2 ) , содержащее 1 р2 ) и определяемое условием: (p1 * p2 * ) є W0 ↔Q*=Q ,где Q* – середина отрезка р1 * р2 * . Следующее утверждение доказывается аналогично теореме 1.

Предложение 3. Прямаяjj )X-j =0 (10) является касательной в точке Р к прообразу f-1 (W0 ) многообразияW0 при отображенииf . Дифференциальное уравнение линииf-1 (W0 ) имеет вид:jj )Wj =0 .

Теорема 3.Прямые, касательные в точке Р к многообразиямf-1 (W1 ), f-1 (W2 ) , f-1 (W), f-1 (W0 ) составляют гармоническую четверку.

Доказательство вытекает из (7),(8),(10).

§5. Точечные отображения, индуцируемые отображением f .

Рассмотрим отображения:

П1 : (р12 ) R(p1 ,p2 )→p1 A1 (5.1)

П2 : (р12 ) R(p1 ,p2 )→p2 A1 (5.2)

Отображение f: A2 →R(p1 ,p2 ) порождает точечные отображения:

φ1 = П1 f: A2 →A1 (5.3)

φ2 = П2 f: A2 →A1 (5.4)

В репере нулевого порядка дифференциальные уравнения отображений φ1 и φ2 меют соответственно вид (2.5 а) и (2.5 б) . Подобъекты Г1,2 = { λ j jk } и Г2,2 = jjk } объекта Г2 являются фундаментальными объектами второго порядка отображений φ1 и φ2 .

В работе <4> доказано, что разложение в ряд Тейлора отображений имеет соответственно вид:

x=1+λj Xj +1/2λjk Xj Xk +1/4λy ρk Xj Xk +<3>, (5.5)

y=-1+μj Xj +1/2μjk Xj Xk +1/4μy ρk Xj Xk +<3>, (5.6)

Введем системы величин:

Λjkjk +1/4(λj ρkk ρj ),

Μjkjk +1/4(μj ρkk ρj )

Тогда формулы (5.5) и (5.6) примут соответственно вид:

x=1+λj Xj +1/2Λjk Xj Xk +<3> (5.7)

К-во Просмотров: 455
Бесплатно скачать Реферат: Формула Шлетца