Реферат: Графики и их функции

Краткое рассмотрение различных способов задания функции показывает, что для подробного изучения ее поведения лучше всего сочетать исследование аналитического выражения функции с построением ее графика.

Наконец, еще раз подчеркнем следующее: из определения функции вытекает, что для ее задания необходимо лишь указать закон соответствия между величинами х и у. Способ же задания этого закона не имеет значения.

Глава III. Исследования функций и их графиков

3.1 Простейшие функции и их графики

Пропорциональные величины. Если переменные величины у и х (прямо) пропорциональны, то функциональная зависимость между ними выражается уравнением y = kx, где k есть некоторая постоянная величина (коэффициент пропорциональности). График прямой пропорциональности есть прямая линия (см. приложение 1), проходящая через начало координат и образующая с осью абсцисс угол α, тангенс, которого равен постоянной k; tg α = k. Поэтому коэффициент пропорциональности k называется также угловым коэффициентом.

Линейная функция. Линейной называется функция вида: y = kx + b, в аналитическое выражение, которой переменные х и у входят в первой степени. График линейной функции представляет прямую линию (см. приложение 2), располагающеюся относительно координатных осей различным образом, в зависимости от постоянных коэффициентов, k и b, которые могут принимать положительные или отрицательные значения или быть равным нулю. Для построения графика линейной функции можно воспользоваться геометрическим смыслом коэффициентов k и b или найти две точки прямой на плоскости, например, точки пересечения с осями координат.

Свойства функции y = kx+b:

D(f) = (-+);

Возрастает, если k >0, убывает, если k<0;

Не ограничена ни сверху, ни снизу;

Нет ни наибольшего, ни наименьшего значений;

Функция непрерывна;

E(f) = (-+);

Обратная пропорциональность. Если переменные величины у и х обратно пропорциональны, то функциональная зависимость между ними выражается уравнением , где с есть некоторая постоянная величина. График обратной пропорциональности есть кривая линия (см. приложение 3), называемая гиперболой, состоящая из двух ветвей.

Свойства функции :

D(f) = (-0) U (0, +);

Если с >0, то функция убывает на открытом луче (-0) и на открытом луче (0, +); если с<0, то функция возрастает на (-0) и на (0, +);

Не ограничена ни снизу, ни сверху;

Нет ни наименьшего, ни наибольшего значений;

Функция непрерывна на открытом луче (-0) и на открытом луче (0, +);

Е(f) = (-0) U (0, +);

Если с>0, то функция выпукла вверх при х<0, т.е. на отрытом луче (-0), и выпукла вниз при х>0, т.е. на открытом луче (0, +). Если с<0, то функция выпукла вверх при х>0 и выпукла вниз при х<0;

Функция имеет асимптоты y = 0 и x = 0/

Квадратичная функция. Функция y = ax2 + bx + с (a, b, с - постоянные величины; а ≠ 0) называется квадратичной. В простейшем случае y = ax2 (b = с = 0) график есть кривая линия, проходящая через начало координат. Кривая, служащая графиком функции y = ax2, есть парабола (см. приложение 4). Каждая такая парабола имеет ось симметрии (OY), называемую осью параболы. Точка О пересечения параболы с ее осью называется вершиной параболы. График функции y = ax2 + bx + с имеет ту же формулу, что и график функции y = ax2 (при том же значении а), т.е. также есть парабола. Ось этой параболы по-прежнему вертикальна, но вершина лежит не в начале координат, а в точке

Свойства функции ax2 + bx + с:

Для случая, а>0

D(f) = (-+);

Убывает на луче , возрастает на луче ;

Ограничена снизу, не ограничена сверху;

унаим. = y0, yнаиб. Не существует;

Непрерывна;

К-во Просмотров: 751
Бесплатно скачать Реферат: Графики и их функции