Реферат: Графики и их функции

возрастает на;

не ограничена сверху, ограничена снизу;

не имеет ни наибольшего значения, ни наименьшего значения;

непрерывна;

E(f) =;

выпукла вниз.

Функция . Графиком функции является ветвь параболы (см. приложение 10).

Свойства функции :

D(f) =

Возрастает;

Ограничена снизу, не ограничена сверху;

у наим. = 0, yнаиб. = Не существует;

Непрерывна;

E(f) = ;

Выпукла вверх.

7. Функция . Графиком функции является объединение двух лучей: у = х, х≥0 и

у = - х, х≤0 (см. приложение 11).

Свойства функции .

D(f) = (-+);

Убывает на луче , возрастает на луче ;

Ограничена снизу, не ограничена сверху;

унаим. = 0, yнаиб. Не существует;

Непрерывна;

E(f) = ;

Выпукла вниз.

3.2 Тригонометрические функции

По причине того, что тригонометрические функции изучаются в школьной программе, в реферате на них уделено минимум внимания. Все основные положения указанны в таблице (см. приложение 12), а их графики приведены далее (см. приложение 13).

3.3 Кривые второго порядка

В предыдущем параграфе было установлено, что всякая прямая в прямоугольной системе координат Оху определяется уравнением первой степени относительно переменных х и у. Так же было установлено, всякое уравнение первой степени ах + bу + с = 0 в прямоугольной системе координат определяет прямую и притом единственную, если а² + b² ¹ 0. В настоящей главе мы займемся изучением линий определяемых уравнениями второй степени относительно текущих координат х и у:

ах² + 2bху + су² + 2dх + 2eу + f = 0 (1)

Такие линии называют линиями (кривыми) второго порядка. Коэффициенты уравнения (1) могут принимать различные действительные значения, исключая одновременное равенство а, b и c нулю (в противном случае уравнение (1) не будет уравнением второй степени).

К-во Просмотров: 747
Бесплатно скачать Реферат: Графики и их функции