Реферат: Идентификация параметров осциллирующих процессов в живой природе моделируемых дифференциальными
Выполнила студентка 312гр.
Варламова А.А.
Проверил Токин И.Б
Санкт-Петербург
2007
Оглавление
1. Идентификация параметров в системах описываемых ОДУ
1.1 Градиентные уравнения
1.2 Уравнения в вариациях
1.3 Функционалы метода наименьших квадратов
1.4 Численное решение градиентных уравнений
1.4.1 Полиномиальные системы
1.4.2 Метод рядов Тейлора
1.4.3 Метод Рунге-Кутта
2. Модели осциллирующих процессов в живой природе
2.1 Модель Лотки
2.1.1 Осциллирующие химические реакции
2.1.2 Осцилляция популяций в системе “хищник-жертва”
2.2 Другие модели
3. Идентификация параметров модели Лотки
3.1 Дифференциальные уравнения
3.2 Постановки задачи идентификации и функционалы МНК
3.3 Как ускорить вычисления
3.4 Численный эксперимент
4. О других методах идентификации
Литература
1. Идентификация параметров в системах, описываемых ОДУ
1.1 Градиентные уравнения
Градиентные уравнения возникают в связи с задачей нахождения экстремумов функций многих аргументов. Важно, что эти аргументы сами могут зависеть от решений каких-то уравнений - численных, дифференциальных и иных. Мы будем использовать их для минимизации функций аргументов, за-висящих от решений обыкновенных дифференциальных уравнений.
Рассмотрим вещественнозначную функцию аргумента , и пусть и . Тогда величина
--> ЧИТАТЬ ПОЛНОСТЬЮ <--