Реферат: Интегралы Дифференциальные уравнения

,

где и – некоторые числа.

3. Если характеристическое уравнение (4) не имеет действительных корней, то общее решение уравнения (3) имеет вид


,

где ,, и – некоторые числа.

Теорема. Общее решение линейного неоднородного дифференциального уравнения (2) равно сумме общего решения соответствующего однородного уравнения (3) и частного решения исходного неоднородного уравнения (2).

Числовым рядом называется выражение вида

(1)

Числа называются членами ряда, а член - общим членом ряда.

Сумма первых членов ряда называется – й частичной суммой ряда.

Ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм, то есть

Число называется суммой ряда.

Свойства сходящихся рядов.

1. Если ряд (1) сходится и имеет сумму , то и ряд полученный умножением данного ряда на число также сходится и имеет сумму .

2. Если ряды


и

(2)

сходятся и их суммы соответственно равны и , то и ряд представляющий сумму данных рядов также сходится, и его сумма равна .

3. Если ряд сходится, то сходится и ряд, полученный из данного путем отбрасывания или приписывания конечного числа членов.

Теорема (необходимый признак сходимости) Если ряд сходится, то предел его общего члена стремится к нулю, то есть

.

Теорема (признак сравнения). Пусть (1) и (2) – ряды с положительными членами, причем члены первого ряда не превосходят членов второго, то есть при любом

.

Тогда а) если сходится ряд (2), то сходится и ряд (1)

б) если расходится ряд (1), то расходится и ряд (2).

Теорема (предельный признак сравнения). Пусть (1) и (2) – ряды с положительными членами и существует конечный предел отношения их общих членов , то ряды одновременно сходятся, либо расходятся.

Теорема (признак Даламбера). Пусть дан ряд (1) с положительными членами и существует предел


К-во Просмотров: 488
Бесплатно скачать Реферат: Интегралы Дифференциальные уравнения