Реферат: Исследование функций
3. (см. пример 2). Исследуем функцию на монотонность и экстремум:
х | (–¥; –1) | –1 | (–1; 0) | 0 | (0; 1) | 1 | (1; +¥) |
у' | + | 0 | – | – | – | 0 | + |
у | –2 | – | 2 |
max min
4. (см. пример 5). Исследуем функцию на выпуклость и найдем точки перегиба.
х | (–¥; 0) | 0 | (0; +¥) |
у'' | – | – | + |
у | выпукла вверх | – | выпукла вниз |
функция не определена |
Несмотря на то, что функция поменяла характер выпуклости при переходе через точку х = 0, но в ней нет перегиба, так как в этой точке функция не определена.
5. (см. примеры 6 и 7). Найдем асимптоты функции:
а) х = 0 – вертикальная асимптота;
б) у = х – наклонная асимптота.
6. Точек пересечения с осями координат у данной функции нет, так как , при любых х Îú, а х = 0 ÏD(у).
7. По полученным данным строим график функции:
Пример 10. Построить график функции .
Решение.
1. D(у) = (–¥; –1) È (–1; 1) È (1; +¥).
2. – функция нечетная. Следовательно, график функции будет симметричен относительно начала координат.
3. Исследуем функцию на монотонность и экстремум:
3х2 – х4 = 0, х2 · (3 – х2 ) = 0, х1 = 0, х2 = , х3 = .
х | (–¥;) | (; 0) | –1 | (–1; 0) | 0 | (0; 1) | 1 | (1; ) | (; +¥) | ||
у' | – | 0 | + | – | + | 0 | + | – | + | 0 | – |
у | 2,6 | – | 0 | – | –2,6 |
4. Исследуем функцию на выпуклость и точки перегиба:
х = 0 – точка, подозрительная на перегиб.
х | (–¥; –1) | –1 | (–1; 0) | 0 | (0; 1) | 1 | (0; +¥) |
у'' | + | – | – | 0 | + | – | – |
у |
выпукла вниз | – |
выпукла вверх | 0 | выпукла вниз | – |
выпукла вниз |
перегиб |
5. Найдем асимптоты функции:
а) х = –1, х = 1 – вертикальные асимптоты.