Реферат: Изучение элементов современной алгебры, на примере подгрупп симметрических групп, на факультативных занятиях по математике
Совершенно ясно, что начальное и среднее математическое образование со своими неизменными программами и методами полностью оторвано от современной математической науки, от ее фундаментальных концепций, идей, от ее приложений. Современная школьная программа по математики сложилась в прошлом веке. Она катастрофическим образом отстает от требований современной жизни.
Бурное развитие всех отраслей техники и связанный с этим новый этап в развитии математики как науки начинает настоятельно влиять на школу. Наступило время серьезного пересмотра содержания школьного обучения, причем начать следует с критического анализа материала программы сложившегося в настоящее время школьного курса математики. Нужно отметить, что с точки зрения новых требований в школе наша действующая программа по математике содержит много такого, что не имеет серьезного теоретического и практического значения. В школе уделяется слишком много внимания факторам и методам, не имеющим значения для практической деятельности в любой области [20].
Математика, действительно полезная в настоящее время, - это современная математика. Она имеет наибольший шанс быть созвучной умственным запросам современных детей. Поэтому, особенно назрела необходимость внедрения в школьное обучение элементов современной математики.
На наш взгляд, наиболее целесообразным является введение в школьное преподавание элементов современной абстрактной алгебры.
Начавшийся в нашем веке процесс алгебраизации математики не прекращается, а это вызывает упорные попытки введения в школьное математическое образование основных алгебраических понятий. Естественно, что здесь на первый план выдвигается теория групп, во-первых, ввиду той фундаментальной роли, которую группы играют в современной математике, во-вторых, ввиду относительной простоты этого понятия. Математическая глубина и необычайно широкая сфера применения теории групп сочетаются с простотой ее основных положений – понятий группы, целый ряд важных теорем можно сформулировать и доказать, обладая начальными представлениями в области теории множеств. Поэтому теория групп как нельзя лучше подходит для того, чтобы показать школьникам образец современной математики [3], [7].
Кроме того, изучение элементов теории групп полезно для школьников, способствует их интеллектуальному росту, проявляющемуся в развитии и обогащении различных сторон их мышления, качеств и черт личности, а также воспитанию у учащихся интереса к математике, к науке.
В связи с этим проблема нашего исследования заключается в разработке и апробации факультативного курса «элементы современной алгебры для учащихся старших классов, обоснование возможности и целесообразности внедрения элементов современной алгебры в школьное математическое образование.
Цель исследования – выявление возможностей введения элементов современной алгебры в программу факультативных курсов для учащихся 9-10-х классов, обоснование целесообразности и доступности данного учебного материала и влияние его на развитие абстрактного мышления школьников.
Объект исследования – элементы современной алгебры в программе факультативных курсов по математике.
Предмет исследования – теория групп на факультативных занятиях и влияние этой теории на развитие абстрактного мышления школьников.
Гипотеза исследования – введение элементов современной алгебры в программу факультативных курсов по математики для учащихся старших классов целесообразно, доступно и способствует развитию абстрактного мышления, если осуществляется систематическая и планомерная работа с учащимися.
В соответствии с целью и гипотезой в ходе исследования решались следующие задачи :
1)на основе анализа литературы обосновать возможность и целесообразность использования элементов современной алгебры на факультативных занятиях;
2)провести психолого-педагогический анализ развития абстрактного мышления учащихся старших классов;
3)разработать в рамках факультативного курса «Элементы современной алгебры» занятия по теме: «Понятие подгруппы. Подгруппы симметрических групп», а также разработать программу небольшого факультативного курса «Элементы теории групп. Симметрические группы»;
4)экспериментально проверить эффективность внедрения в программу факультативных курсов по математике элементов теории групп.
Методы исследования : анализ математической, методической и психолого-педагогической литературы по данной теме; отбор учебного материала для использования на факультативных занятиях; осуществление педагогического эксперимента.
Экспериментальная база исследования – национальная гимназия им. Н.Ф. Катанова (г. Абакан, Республика Хакасия).
Результаты исследования обсуждались на семинарах, доказывались на научно-практической конференции «Катановские чтения» в апреле 2000 года.
Структура дипломной работы . Работа состоит из введения, двух глав, заключения, списка использованной литературы и приложений.
ГЛАВА 1. ПОДГРУППЫ СИММЕТРИЧЕСКИХ ГРУПП
В жизни современного общества очень важную роль играет математика. В настоящее время математика находит широкое применение при решении самых разнообразных проблем науки и практики. Особенно велика роль современной математики.
Одной из наиболее важных и быстро развивающихся областей современной математики является абстрактная алгебра.
В центре внимания современной абстрактной математики не только такие алгебраические структуры, как группы, подгруппы, полугруппы, кольца и так далее, ставшие уже классическими, и их далеко идущие обобщения, но и объекты новой природы [27].
Одним из основных разделов современной алгебры является теория групп. Группы – это один из основных типов алгебраических структур.
Понадобилась работа нескольких поколений математиков, занявшая в общей сложности около ста лет, прежде чем идея группы вы кристаллизировалась с ее сегодняшней ясностью.
Теория групп начала оформляться в качестве самостоятельного раздела математики в конце XVIII века. В течение первый десятилетий XIX века она развивалась медленно и практически не привлекала к себе внимания. Но затем, около 1830 года, благодаря работам Галуа и Абеля о разрешимости алгебраических уравнений всего за несколько лет она совершила гигантский скачок, который оказал глубокое влияние на развитие всей математики. С тех пор основные понятия теории групп стали детально исследоваться [3].
В настоящее время теория групп является одной из самых развитых областей алгебры, имеющей многочисленные применения как в самой математике, так и за ее пределами – в топологии, теории функций, кристаллографии, квантовой механике и других областях математики и естествознания.
Понятие группы тесно связано с понятием подгруппы. Слово «подгруппа» означает «группа внутри группы».