Реферат: Изучение элементов современной алгебры, на примере подгрупп симметрических групп, на факультативных занятиях по математике
Пусть Н и G – группы перестановок, причём Н является подгруппой G. В теории групп существует теорема, доказанная Лагранжем, устанавливающая связь между порядками групп Н и G. Эта теорема очень часто применяется в теории групп.
Теорема Лагранжа : если Н – подгруппа группы G, то ее порядок является делителем порядка G.
Доказательство.
Пусть Е, а1 , а2 , …, аn -1 – все перестановки, содержащиеся в группе G, - все перестановки из Н (то есть ). Если Н=G, то утверждение теоремы справедливо, поэтому предположим, что НG (Н – собственная подгруппа G). В силу этого предложения существует перестановка такая, что . Рассмотрим ряд перестановок.
(1)
Все перестановки ряда (1) различны: если бы для каких-то i, j имело место равенство , то, умножив его правую и левую части на , мы получили бы равенство . Кроме того, ни одна из них не содержится в подгруппе Н: если бы для какого-то номера i имело место включение , то это означало бы, что для какого-то j. Из этого равенства имеем , а так как Н – группа перестановок, то , что противоречит выбору этой перестановки.
Если перестановками группы Н и ряда (1) исчерпаны все перестановки из G, то |G|=2|H|, и все доказано. В противном случае найдется такая перестановка , что и не содержится в ряде (1). Определим для нее ряд перестановок.
(2)
Аналогично проверяется, что:
1) все перестановки ряда (2) различны;
2) они не содержатся в Н;
3) ни одна из них не встречается среди перестановок ряда (1).
Если перестановками из подгруппы Н и рядов (1) и (2) исчерпываются все элементы группы G, то |G|=3|H|, и все доказано.
В противном случае продолжаем процесс выбора перестановок и построения рядов вида (1) и (2) дальше. Так как группа G конечная, то на каком-то, например, на k-м шаге все перестановки из G будут исчерпаны. Иными словами, все их можно расположить в такую таблицу:
, | , | , | ..., | , |
, | , | , | ..., | , |
*, | *, | *, | ..., | *, (3) |
..., | ..., | ..., | ..., | ..., |
*, | *, | *, | ..., | *, |
при этом все перестановки в каждой из строк этой таблицы различны и любые 2 строки не имеют общих элементов. Поскольку общее число элементов в таблице равно n (порядок группы G), а число элементов в каждой строке равно m (порядок группы Н), то имеем равенство , то есть m является делителем n.
Теорема доказана.
Число k называют индексом подгруппы Н в группе G и обозначают [G:H]. Из доказательства теоремы Лагранжа мы получаем, что имеет место равенство |G|=|H|[G:H].
Так как порядок циклической подгруппы, порожденной перестановкой , совпадает с порядком перестановки , то из теоремы Лагранжа получаем, что порядок любой перестановки из G – делитель |G|.
Теорема Лагранжа позволяет существенно упростить решение задачи описания всех подгрупп данной группы. Например, собственные подгруппы из симметрической группы S3 могут состоять из двух и трех перестановок (делители числа 3!=6), поэтому не нужно непосредственно проверять являются ли подгруппами группы S3 подмножество, состоящее из 4 или 5 перестановок. А ведь эта проверка длинная, так как есть подмножество из S3 , состоящие из 4 или 5 элементов. Таким образом, даже на одном этом примере видно, насколько существенным может быть применение теоремы Лагранжа.
1.5. СЛЕДСТВИЯ ИЗ ТЕОРЕМЫ ЛАГРАНЖА
Сформулируем некоторые непосредственные следствия из теоремы Лагранжа о порядках подгрупп.
Теорема : если порядок группы G есть простое число, то:
1) группа G не имеет собственных подгрупп;
2) группа G является циклической.
Доказательство.
Утверждение 1) следует непосредственно из теоремы Лагранжа и определения простого числа.
Для доказательства утверждения 2) обозначим через любой отличный от Е элемент группы G простого порядка.
Если порядок равен n, то и n>1. Множество , n-1>0, составляет циклическую группу n-го порядка в группе G, так что Н – подгруппа данной группы G простого порядка. По теореме Лагранжа порядок n этой подгруппы является делителем числа р. Так как , то n=p. Но Н – подгруппа группы G. Следовательно, Н совпадает с группой G. Это доказывает утверждение 2).
Теорема доказана.
Из теоремы Лагранжа следует только то, что если в группе G есть подгруппа Н, то порядок группы G кратен порядку группы Н. Но для нас остается открытым вопрос, верно ли обратное утверждение: если порядок группы G равен g, а h – делитель числа g, то обязательно ли группа G имеет подгруппу порядка h? Для доказательства того факта, что это обратное утверждение не верно можно использовать знакопеременную группу А4 . Эта группа имеет порядок 12, но в ней нет подгрупп порядка 6. Таким образом, утверждение, обратное к теореме Лагранжа, не верно.