Реферат: Изучение тригонометрического материала в школьном курсе математики
и т.д.
К функциям от углов можно прийти и из геометрических соображений.
Формулы приведения для и
выводится из определения этих функций и ранее полученных формул приведения для синуса и косинуса. После этого полученные результаты сводятся в одну таблицу, с помощью которой можно сформулировать мнемоническое правило. Желательно учащимся предложить алгоритм применения формул приведения. Поясним его на примере:
{определяем четность, в которой оканчивается угол
- II четверть; определяем знак данной функции в этой четверти – " - ". Изменяется ли название функции – нет, поэтому:}
= - cos
.
Вернёмся к выводу формулы синуса суммы и разности двух углов.
,
а затем применяется уже известная формула.
Формулы двойного угла выводятся из формулы синуса и косинуса суммы и разности двух углов, положив .
Сумму и разность тригонометрических функций можно преобразовать в произведение, используя следующий пример:
={
,
}=
=,
но:
Таким образом:
Замечание: при ознакомлении учащихся с формулами следует добиваться от них проговаривания словесных формулировок доказываемых формул.
Наприме?