Реферат: Кинематика

х = х/ , у = у/ , z = z / (3.1)

Введем в рассмотрение радиусы-векторы, определяющие положение точек М и М/ в подвижной и неподвижной системах отсчета (рис. 3.1).

- радиус-вектор, определяющий положение начала подвижной системы оху z в неподвижной системе отсчета о1 х1 у1 z 1 .

= - радиус-вектор, определяющий положение движущейся точки М в подвижной системе отсчета. Он описывает относительное движение точки.

- радиус-вектор, определяющий положение точки М/ подвижной системы в этой же системе.

- радиус-вектор, определяющий положение точки М/ подвижной системы в неподвижной системе отсчета. Он описывает переносное движение точки.

- радиус-вектор, определяющий положение движущейся точки М в неподвижной системе отсчета. Он описывает абсолютное движение.

3.2 Теоремы о схождении скоростей и ускорений

Скорости и ускорения точки в различных движениях будем определять как первую и вторую производные по времени от соответствующих радиусов-векторов.

1. Относительную скорость и относительное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая единичные орты константами (в подвижной системе – они постоянны).

(3.3)
(3.2)

2. Переносную скорость и переносное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая координаты х/ , у/ , z / константами, а единичные орты – переменными.

так как дифференцирование проведено, то мы можем воспользоваться равенствами (3.1), т.е. заменить х/ на х , у/ на у , z / на z :

(3.5)
(3.4)

3. Абсолютную скорость и абсолютное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая все величины переменными:

Таким образом доказана теорема сложения скоростей:

Абсолютная скорость равна геометрической сумме переносной и относительной скоростей.

(3.6)

находим абсолютное ускорение:

где введено обозначение:

(3.7)

Величина , определяемая равенством (3.7) называется поворотным ускорением или ускорением Кориолиса, по имени французского ученого, доказавшего теорему сложения ускорений:

Абсолютное ускорение точки равно геометрической сумме переносного, относительного и Кориолисов ускорений.


(3.8)

3.3 Ускорение Кориолиса, его величина направление и физический смысл

Рассмотрим ускорение Кориолиса, определяемое равенством (3.7). Если подвижная система движется относительно неподвижной поступательно (т.е. переносное движение поступательное), то единичные орты будут постоянны и по модулю и по направлению и их производные по времени будут равны нулю, следовательно и ускорение Кориолиса равно нулю.

Теорема о сложении ускорений при поступательном переносном движении будет выражаться равенством:

К-во Просмотров: 2342
Бесплатно скачать Реферат: Кинематика