Реферат: Кинематика
х = х/ , у = у/ , z = z / (3.1)
Введем в рассмотрение радиусы-векторы, определяющие положение точек М и М/ в подвижной и неподвижной системах отсчета (рис. 3.1).
- радиус-вектор, определяющий положение начала подвижной системы оху z в неподвижной системе отсчета о1 х1 у1 z 1 .
= - радиус-вектор, определяющий положение движущейся точки М в подвижной системе отсчета. Он описывает относительное движение точки.
- радиус-вектор, определяющий положение точки М/ подвижной системы в этой же системе.
- радиус-вектор, определяющий положение точки М/ подвижной системы в неподвижной системе отсчета. Он описывает переносное движение точки.
- радиус-вектор, определяющий положение движущейся точки М в неподвижной системе отсчета. Он описывает абсолютное движение.
3.2 Теоремы о схождении скоростей и ускорений
Скорости и ускорения точки в различных движениях будем определять как первую и вторую производные по времени от соответствующих радиусов-векторов.
1. Относительную скорость и относительное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая единичные орты константами (в подвижной системе – они постоянны).
|
|
2. Переносную скорость и переносное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая координаты х/ , у/ , z / константами, а единичные орты – переменными.
так как дифференцирование проведено, то мы можем воспользоваться равенствами (3.1), т.е. заменить х/ на х , у/ на у , z / на z :
|
|
3. Абсолютную скорость и абсолютное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая все величины переменными:
Таким образом доказана теорема сложения скоростей:
Абсолютная скорость равна геометрической сумме переносной и относительной скоростей.
(3.6)
находим абсолютное ускорение:
где введено обозначение:
(3.7)
Величина , определяемая равенством (3.7) называется поворотным ускорением или ускорением Кориолиса, по имени французского ученого, доказавшего теорему сложения ускорений:
Абсолютное ускорение точки равно геометрической сумме переносного, относительного и Кориолисов ускорений.
(3.8)
3.3 Ускорение Кориолиса, его величина направление и физический смысл
Рассмотрим ускорение Кориолиса, определяемое равенством (3.7). Если подвижная система движется относительно неподвижной поступательно (т.е. переносное движение поступательное), то единичные орты будут постоянны и по модулю и по направлению и их производные по времени будут равны нулю, следовательно и ускорение Кориолиса равно нулю.
Теорема о сложении ускорений при поступательном переносном движении будет выражаться равенством: