Реферат: Кольца и полукольца частных
Из равенства правых частей следует, что
3. покажем, что для .
Пусть
Класс является нейтральным по умножению (единицей полукольца), т.к.
, поскольку из равенства
тогда
.
4. умножение дистрибутивно относительно сложения:
Следовательно, правосторонний дистрибутивный закон выполняется:
Аналогично доказывается левосторонний закон дистрибутивности.
Таким образом, доказано, что является коммутативным полукольцом с 1.
Полукольцо называется классическим полукольцом частных полукольца
.▲
Глава 2
Для построения полного полукольца частных можно воспользоваться следующим методом. Рассмотрим дробь как частичный эндоморфизм аддитивной полугруппы
неотрицательных целых чисел. Его область определения – идеал
, и он переводит
в
, где
. Аналогично, дробь
определена на идеале
и переводит
в
. Эти две дроби эквивалентны, т.е. они согласованы на пересечении своих областей определений, равном идеалу
, поскольку та и другая дробь переводят
в
. Отношения определяются как классы эквивалентных дробей. Варьируя этот метод, можно выбрать в каждом классе эквивалентности одну «несократимую» дробь. Рассмотренный выше класс содержит несократимую дробь
.
Данный метод можно применить к произвольному коммутативному полукольцу для построения «полного полукольца частных», где в качестве областей определения допускаются лишь идеалы определённого типа – плотные идеалы.
Определение2 . Идеал коммутативного полукольца
называется плотным, если для
и
выполняется равенство
тогда и только тогда, когда
.
Свойства плотных идеалов полукольца :
10 - плотный идеал.
Доказательство:
Пусть для выполнено
. Положим
, тогда
. Таким образом
- плотный идеал по определению. ▲
20 Если - плотный идеал и
, то идеал
плотный.
Доказательство:
Если - плотный идеал, то для
из равенства
следует
. Пусть для
выполнено
. Так как по условию
возьмём
. Тогда т.к.
- плотный идеал получаем
отсюда
. Таким образом
- плотный идеал по определению. ▲
30 Если и
- плотные идеалы, то
и
- так же плотные идеалы.
Доказательство:
Положим для выполняется
. Пусть
, где
,
. Элемент
т.к.
, тогда верно равенство
отсюда
, т.к.
- плотный идеал имеем
,
, и
- плотный,
. Таким образом
- плотный идеал.
Пусть ,
тогда по определению идеала:
. С другой стороны
значит
. Тогда по 20
- плотный идеал. ▲
40 Если , то 0 не является плотным идеалом.
Доказательство.