Реферат: Кольца и полукольца частных
Из равенства правых частей следует, что
3. покажем, что для .
Пусть
Класс является нейтральным по умножению (единицей полукольца), т.к. , поскольку из равенства тогда .
4. умножение дистрибутивно относительно сложения:
Следовательно, правосторонний дистрибутивный закон выполняется:
Аналогично доказывается левосторонний закон дистрибутивности.
Таким образом, доказано, что является коммутативным полукольцом с 1.
Полукольцо называется классическим полукольцом частных полукольца .▲
Глава 2
Для построения полного полукольца частных можно воспользоваться следующим методом. Рассмотрим дробь как частичный эндоморфизм аддитивной полугруппы неотрицательных целых чисел. Его область определения – идеал , и он переводит в , где . Аналогично, дробь определена на идеале и переводит в . Эти две дроби эквивалентны, т.е. они согласованы на пересечении своих областей определений, равном идеалу , поскольку та и другая дробь переводят в . Отношения определяются как классы эквивалентных дробей. Варьируя этот метод, можно выбрать в каждом классе эквивалентности одну «несократимую» дробь. Рассмотренный выше класс содержит несократимую дробь .
Данный метод можно применить к произвольному коммутативному полукольцу для построения «полного полукольца частных», где в качестве областей определения допускаются лишь идеалы определённого типа – плотные идеалы.
Определение2 . Идеал коммутативного полукольца называется плотным, если для и выполняется равенство тогда и только тогда, когда .
Свойства плотных идеалов полукольца :
10 - плотный идеал.
Доказательство:
Пусть для выполнено . Положим , тогда . Таким образом - плотный идеал по определению. ▲
20 Если - плотный идеал и , то идеал плотный.
Доказательство:
Если - плотный идеал, то для из равенства следует . Пусть для выполнено . Так как по условию возьмём . Тогда т.к. - плотный идеал получаем отсюда . Таким образом - плотный идеал по определению. ▲
30 Если и - плотные идеалы, то и - так же плотные идеалы.
Доказательство:
Положим для выполняется . Пусть , где , . Элемент т.к. , тогда верно равенство отсюда , т.к. - плотный идеал имеем , , и - плотный, . Таким образом - плотный идеал.
Пусть , тогда по определению идеала: . С другой стороны значит . Тогда по 20 - плотный идеал. ▲
40 Если , то 0 не является плотным идеалом.
Доказательство.