Реферат: Кольца и полукольца частных
Поэтому, гомоморфизм является мономорфизмом и вкладывается в полное полукольцо частных.
Гомоморфизм будем называть каноническим мономорфизмом в .▲
Глава 3.
Определение5 . Любому мультипликативно сокращаемому элементу сопоставим плотный идеал . Если , то элемент назовём классической дробью, полагая для .
Теорема3 . Множество дробей образует подполукольцо полного полукольца частных, изоморфное классическому полукольцу частных полукольца .
Доказательство:
Рассмотрим отображение , т.е. .
1. Докажем, что - отображение: если и , , где , , то .
Имеем
Возьмём элемент из пересечения плотных идеалов , т.е. и
Тогда , домножим на получим . Так как и на выполняется коммутативность по умножению, то , отсюда для .
2. Докажем, что является полукольцевым гомоморфизмом, т.е. сохраняются полукольцевые операции.
2.1
. Покажем, что дробь согласована с на плотном идеале .
Пусть , .
для .
Следовательно .
2.2
.
Идеал содержит , покажем, что и согласованы на плотном идеале .
Пусть , . Тогда
для .
Значит .
Таким образом - полукольцевой гомоморфизм классического полукольца частных в полное полукольцо частных .
3. Докажем, что - инъективный гомоморфизм.
Пусть для . Предположим, что дроби и согласованы на некотором плотном идеале , т.е. для выполнено . Но , . Тогда . Домножим обе части равенства на получим: